分析 (1)由等边△ABC,即可得∠B=∠BAC=60°,求得∠KAC=120°,又由⊙M与BA的延长线AK及边AC均相切,利用切线长定理,即可得∠KAM=60°,然后根据同位角相等,两直线平行,证得AM∥BC;
(2)根据(1),易证得AM∥BC,CM∥AB,继而可证得四边形ABCM是平行四边形.
解答 证明:
(1)连接AM,如图1,
∵AB=AC,∴∠B=∠ACB.
∵⊙M与BA的延长线AK及边AC均相切,![]()
∴∠KAM=∠CAM=$\frac{1}{2}$∠KAC,
又∠KAC=∠B+∠ACB,
∴∠B=$\frac{1}{2}$∠KAC.
∴∠KAM=∠B.
∴AM∥BC.
(2)∵AB=AC,∠B=60°,如图2,
∴△ABC是等边三角形,
即∠B=∠BAC=∠ACB=60°.
∴∠KAC=180°-∠BAC=120°,∠FCA=120°,
∵⊙M与BA的延长线AK、BC的延长线CF及边AC均相切,
∴∠KAM=∠CAM=$\frac{1}{2}$∠KAC=$\frac{1}{2}$×l20°=60°,
∠KCM=∠ACM=$\frac{1}{2}$∠KCA=$\frac{1}{2}$×l20°=60°,
∴∠KAM=∠B=60°,∠FCM=∠B=60°.
∴AM∥BC,CM∥AB.
∴四边形ABCM是平行四边形.
点评 此题考查了切线长定理、平行线的判定以及等边三角形的判定和性质性质、平行四边形的判定,题目的综合性较强,难度中等,对学生的综合解题能力要求很高,解题的关键是熟记和圆有关的性质定理以及平行四边形的各种判定方法.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{4}=±2$ | B. | $±\sqrt{4}=2$ | C. | $\root{3}{8}=2$ | D. | $\sqrt{{{(-4)}^2}}=-4$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com