精英家教网 > 初中数学 > 题目详情

作业宝如图,已知△ABC,AC=BC,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E.点F是⊙O与AB的一个交点,连DF并延长交CB的延长线于点G.则∠CDG=________,若AB=数学公式,则BG=________.

67.5°    2-2
分析:连接OD,由AC为圆O的切线,根据切线的性质得到OD与AC垂直,又AC=BC,且∠C=90°,得到三角形ABC为等腰直角三角形,得到∠A=45°,在直角三角形ABC中,由AC与BC的长,根据AB的长,又O为AB的中点,从而得到AO等于BO都等于AB的一半,求出AO与BO的长,再由OB-OF求出FB的长,同时由OD和GC都与AC垂直,得到OD与GC平行,得到一对内错角相等,再加上对顶角相等,由两对对应角相等的两三角形相似得到三角形ODF与三角形GBF相似,由相似得比例,把OD,OF及FB的长代入即可求出GB的长.
解答:解:连接OD.
∵CD切⊙O于点D,
∴∠ODA=90°,∠DOA=45°,
∵OD=OF,
∴∠ODF=∠OFD=∠DOA=22.5°,
∴∠CDG=∠CDO-∠ODF=90°-22.5°=67.5°.
∵AC为圆O的切线,
∴OD⊥AC,
又O为AB的中点,∴AO=BO=AB=2
∴圆的半径DO=FO=AOsinA=2×=2,
∴BF=OB-OF=2-2.
∵GC⊥AC,OD⊥AC,
∴OD∥CG,
∴∠ODF=∠G,又∠OFD=∠BFG,
∴△ODF∽△BGF,
=,即=
∴BG=2-2.
故答案为:67.5°,2-2.
点评:此题考查了切圆的综合知识.在运用切线的性质时,若已知切点,连接切点和圆心,得垂直;若不知切点,则过圆心向切线作垂直,即“知切点连半径,无切点作垂直”.圆与相似三角形,及三角函数相融合的解答题、与切线有关的性质与判定有关的证明题是近几年中考的热点,故要求学生把所学知识融汇贯穿,灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案