精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的对角线ACBD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AFABBD于点ENM,连接EO,已知BD=

(1)求正方形ABCD的边长;

(2)求OE的长;

(3)①求证:CNAF

②直接写出四边形AFBO的面积.

【答案】(1)2;(2);(3)①证明见解析,②

【解析】试题分析:(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得点EAF中点,依据三角形中位线OE=CF=;(3) ①通过证明NCB≌△FAB可证得CN=AF; ②依据AFC的面积-BOC的面积.

试题解析:

(1)∵四边形ABCD是正方形,

AB=CD=BC,BCD=ABC=90°,

2BC2=BD2BD=AB= BC =2,

∴正方形ABCD的边长为2;

(2)CF=CA,AF是∠ACF的平分线,

CEAF,∴∠AEC=CEF=90°,EAF的中点,

∵正方形ABCD,OAC的中点,AC=BD=

OE=CF=BD=

(3)①证明:∵∠ABC=ABF=CEF=90°,AB=BC,

∴∠ECB+F=FAB+F=90°,∴∠ECB=FAB,

∴△NCB≌△FAB,

CN=AF.

点睛:本题综合考查了菱形、矩形、正方形的有关性质及判定,其中还串联到等腰三角形和勾股定理等知识,充分体现出几何知识的整体性和推理的严密性在解答有关特殊四边形的性质或判定问题时,既要依托数,也要依托形,这是解答几何问题的最基本的思想方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(
A.3cm
B.4cm
C.5cm
D.8cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料并回答问题: 材料1:如果一个三角形的三边长分别为a,b,c,记 ,那么三角形的面积为
古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.
我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:
下面我们对公式②进行变形: = = = = =
这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.
问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.

(1)求△ABC的面积;
(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】云南地区地震发生后,市政府筹集了必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?

(2)为了节省运费,市政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能求出这三种车型分别有多少辆吗?此时的运费又是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.

(1)若∠COM=∠AOC,求∠AOD的度数;

2)若COM=BOC,求AOCMOD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= 与一次函数y=ax+b的图象交于点A(2,2)、B( ,n).
(1)求这两个函数解析式;
(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①O为直线AB上一点过点O作射线OC使∠BOC=110°.将一三角尺的直角顶点放在点O(OMN=30°),一边OM在射线OB另一边ON在直线AB的下方.

(1)将图①中的三角尺绕点O逆时针旋转至图②使一边OM在∠BOC的内部且恰好平分∠BOC求∠BON的度数;

(2)将图①中的三角尺绕点O以每秒的速度按逆时针方向旋转一周在旋转的过程中t秒时直线ON恰好平分锐角∠AOCt的值为________(直接写出结果);

(3)将图①中的三角尺绕点O顺时针旋转至图③使ON在∠AOC的内部请探究∠AOM与∠NOC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是a,最小的积是b.

(1)a,b的值;

(2)|x+a|+|y-b|=0,求(x+y)÷(x-y)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全,现要做一个不锈钢扶手AB及两根与FG垂直且长为1米的不锈钢架杆AD和BC(杆子的底端分别为D、C),且∠DAB=66.5°.(参考数据:cos66.5°≈0.40,sin66.5°≈0.92)
(1)求点D与点C的高度差DH;
(2)求所有不锈钢材料的总长度(即AD+AB+BC的长,结果精确到0.1米)

查看答案和解析>>

同步练习册答案