精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(
A.3cm
B.4cm
C.5cm
D.8cm

【答案】B
【解析】解:∵ABCD的周长为26cm, ∴AB+AD=13cm,OB=OD,
∵△AOD的周长比△AOB的周长多3cm,
∴(OA+OD+AD)﹣(OA+OB+AB)=AD﹣AB=3cm,
∴AB=5cm,AD=8cm.
∴BC=AD=8cm.
∵AC⊥AB,E是BC中点,
∴AE= BC=4cm;
故选:B.
ABCD的周长为26cm,对角线AC、BD相交于点O,若△AOD的周长比△AOB的周长多3cm,可得AB+AD=13cm,AD﹣AB=3cm,求出AB和AD的长,得出BC的长,再由直角三角形斜边上的中线性质即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列各式计算正确的是( )

A. 7-2×(-)=5×(-)=-1 B. -3÷7×=-3÷1=-3

C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为 , 点D的坐标为(用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图数轴上点A表示数xB表示-2,C表示数2x+8.

(1)若将数轴沿点B对折A与点C恰好重合则点A和点C分别表示什么数?

(2)BC=4AB则点A和点C分别表示什么数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式2ab+c-3b+c)的结果是______.

【答案】b+c)(2a-3

【解析】解析2ab+c-3b+c=b+c)(2a-3.

点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).

2)公式法:完全平方公式,平方差公式.

(3)十字相乘法.

因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.

型】填空
束】
17

【题目】在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用图(1)来表示.请你根据此方法写出图(2)中图形的面积所表示的代数恒等式:____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若 =2,则 的值为(
A. ??
B. ??
C. ??
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,C为⊙O上一点,点D是 的中点,DE⊥AC于E,DF⊥AB于F.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若OF=4,求AC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线ACBD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AFABBD于点ENM,连接EO,已知BD=

(1)求正方形ABCD的边长;

(2)求OE的长;

(3)①求证:CNAF

②直接写出四边形AFBO的面积.

查看答案和解析>>

同步练习册答案