精英家教网 > 初中数学 > 题目详情
如图所示,已知AB=AC,BD⊥AC,试说明∠BAC=2∠CBD.
分析:作AE⊥BC于E,根据等腰三角形三线合一的性质可得∠BAC=2∠CAE,且∠CAE+∠C=90°,再根据等角的余角相等即可求解.
解答:证明:作AE⊥BC于E.
∵AB=AC,AE⊥BC,
∴∠BAC=2∠CAE,且∠CAE+∠C=90°,
∵BD⊥AB,
∴∠CBD+∠C=90°,
∴∠CBD=∠CAE,
∴∠BAC=2∠CBD.
点评:考查了等腰三角形三线合一的性质,等角的余角相等的性质,关键是作出辅助线解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系.要求:(1)、(2)直接写出结论,(3)、(4)写出结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知AB为圆O的直径,AC为弦,OD∥BC交AC于D,OD=2cm,求BC的长.

查看答案和解析>>

同步练习册答案