精英家教网 > 初中数学 > 题目详情

已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)

(1)2s;(2)3s,cm2;(3)1s

解析试题分析:(1)根据垂直平分线的性质可得AP=AQ,根据三角形的内角和定理可求的∠EQC=45°,即可证得CE=CQ,由题意知:CE=t,BP=2t,则CQ=t,AQ=8-t,在Rt△ABC中,由勾股定理得:AB=10cm,AP=10-2 t,即可求得结果;
(2)过P作,交BE于M,在Rt△ABC和Rt△BPM中,由,可得PM=,由BC =" 6" cm,CE = t可得BE = 6-t,再根据三角形的面积公式及二次函数的性质求解即可;
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上,过P作,交AC于N,证得△PAN ∽△BAC,根据相似三角形的性质可得,由NQ = AQ-AN可得NQ = 8-t-() = .证得△QCF∽△QNP,再根据相似三角形的性质求解即可.
(1)∵点A在线段PQ的垂直平分线上,
∴AP = AQ.
∵∠DEF = 45°,∠ACB = 90°,∠DEF+∠ACB+∠EQC = 180°,
∴∠EQC = 45°.
∴∠DEF =∠EQC. 
∴CE =" CQ."
由题意知:CE = t,BP ="2" t,
∴CQ = t.
∴AQ = 8-t.
在Rt△ABC中,由勾股定理得:AB =" 10" cm,AP = 10-2 t.
∴10-2 t = 8-t.
解得:t = 2.
答:当t =" 2" s时,点A在线段PQ的垂直平分线上;
(2)过P作,交BE于M,

.
在Rt△ABC和Rt△BPM中,
 .  
∴PM = .
∵BC =" 6" cm,CE = t, 
∴BE = 6-t.
∴y=S△ABC-S△BPE====

∴抛物线开口向上.
∴当t = 3时,y最小=
答:当t = 3s时,四边形APEC的面积最小,最小面积为cm2
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上.
过P作,交AC于N

.

∴△PAN ∽△BAC.
.
.
.
∵NQ = AQ-AN,
∴NQ = 8-t-() =
∵∠ACB = 90°,B、C(E)、F在同一条直线上,
∴∠QCF = 90°,∠QCF = ∠PNQ.
∵∠FQC = ∠PQN,
∴△QCF∽△QNP .
 . 
 . 
   

解得t=1.
答:当t = 1s,点P、Q、F三点在同一条直线上.
考点:动点问题的综合题
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=45°,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:
(1)当D在AC上时,求t的值;
(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.
(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省仪征市九年级第二次模拟考试数学试卷(带解析) 题型:解答题

已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省泰州市九年级下学期第二次涂卡训练数学试卷(解析版) 题型:解答题

已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?

(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.

(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)

 

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省仪征市九年级第二次模拟考试数学试卷(解析版) 题型:解答题

已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?

(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.

(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)

 

查看答案和解析>>

同步练习册答案