【题目】如图,两正方形彼此相邻,且大正方形ABCD的顶点A,D在半圆O上,顶点B,C在半圆O的直径上;小正方形BEFG的顶点F在半圆O上,E点在半圆O的直径上,点G在大正方形的边AB上.若小正方形的边长为4 cm,求该半圆的半径.
【答案】该半圆的半径为4cm.
【解析】
先根据正方形的性质得CD=DA=AB,则利用勾股定理可证明OB=OC,设OB=x,则OE=x+4,AB=2x,再根据勾股定理.在Rt△AOB中有OA2=OB2+AB2=5x2.在Rt△OEF中有OF2=OE2+EF2=(x+4)2+42,则(x+4)2+42=5x2,然后解方程得到x=4,再利用OAx进行计算即可.
连接DO,AO,OF,如图,∵四边形ABCD为正方形,∴CD=AD=AB,而OD=OA,OC,OB,∴OB=OC,设OB=x,则OE=x+4,AB=2x.在Rt△AOB中,OA2=OB2+AB2=x2+(2x)2=5x2.在Rt△OEF中有OF2=OE2+EF2=(x+4)2+42,而OA=OF,∴(x+4)2+42=5x2,整理得:x2﹣2x﹣8=0,解得:x1=4,x2=﹣2(舍去),∴x=4,∴OAx=4,即该圆的半径为4cm.
科目:初中数学 来源: 题型:
【题目】我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).
请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.
实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;
函数关系式: (s为常数,s≠0).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.
(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=,∠ACB=60°,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连结AD并延长,与BC相交于点E。
(1)若BC=,CD=1,求⊙O的半径;
(2)取BE的中点F,连结DF,求证:DF是⊙O的切线。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】选择适当的方法解下列方程:
(1)(x-1)2+2x(x-1)=0;
(2)x2-6x-6=0;
(3)6 000(1-x)2=4 860;
(4)(10+x)(50-x)=800;
(5)(2x-1)2=x(3x+2)-7.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8.
(1)判断△OBC的形状,并证明你的结论
(2)求BC的长
(3)求⊙O的半径OF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com