精英家教网 > 初中数学 > 题目详情

【题目】如图所示的网格是正方形网格,线段AB绕点A顺时针旋转αα180°)后与⊙O相切,则α的值为_____

【答案】60°120 °

【解析】

线段AB绕点A顺时针旋转αα180°)后与⊙O相切,切点为C′C″,连接OC′OC″,根据切线的性质得OC′AB′OC″AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°

线段AB绕点A顺时针旋转αα180°)后与⊙O相切,切点为C′C″,连接OC′OC″

OC′AB′OC″AB″

RtOAC′中,∵OC′=1OA=2

∴∠OAC′=30°

∴∠BAB′=60°

同理可得∠OAC″=30°

∴∠BAB″=120°

综上所述,α的值为60°120°

故答案为60°120°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:≈1.414,≈1.732,≈2.449)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,函数(x<0,常数k<0)的图象经过点A(-12)B(mn)(m<-1),过点By轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)阅读理解:

如图,如果四边形ABCD满足AB=ADCB=CD∠B=∠D=90°,那么我们把这样的四边形叫做完美筝形

将一张如图所示的完美筝形纸片ABCD先折叠成如图所示形状,再展开得到图,其中CECF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′FD′相交于点O

简单应用:

1)在平行四边形、矩形、菱形、正方形四种图形中,一定为完美筝形的是

2)当图中的∠BCD=120°时,∠AEB′= °

3)当图中的四边形AECF为菱形时,对应图中的完美筝形 个(包含四边形ABCD).

拓展提升:

4)当图中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上学习了圆周角的概念和性质:顶点在圆上,两边与圆相交同弧所对的圆周角相等,小明在课后继续对圆外角和圆内角进行了探究.

下面是他的探究过程,请补充完整:

定义概念:顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

(1)请在图2中画出所对的一个圆内角;

提出猜想

(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角______这条弧所对的圆周角;一条弧所对的圆内角______这条弧所对的圆周角;(大于等于小于”)

推理证明:

(3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

(4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点P和图形W的中间点的定义如下:Q是图形W上一点,若M为线段PQ的中点,则称M为点P和图形W的中间点.C(-23),D13),E10),F(-20

(1)点A2,0),

①点A和原点的中间点的坐标为

②求点A和线段CD的中间点的横坐标m的取值范围;

2)点B为直线y=2x上一点,在四边形CDEF的边上存在点B和四边形CDEF的中间点,直接写出点B的横坐标n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC是边长为4的等边三角形,边AB在射线OM上,且OA6,点D是射线OM上的动点,当点D不与点A重合时,将ACD绕点C逆时针方向旋转60°得到BCE,连接DE

1)如图1,求证:CDE是等边三角形.

2)设ODt

①当6t10时,BDE的周长是否存在最小值?若存在,求出BDE周长的最小值;若不存在,请说明理由.

②求t为何值时,DEB是直角三角形(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:A03),B30),C34)三点,点Px,﹣0.5x),当ABP的面积等于ABC的面积时,则P点的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两正方形彼此相邻,且大正方形ABCD的顶点AD在半圆O上,顶点BC在半圆O的直径上;小正方形BEFG的顶点F在半圆O上,E点在半圆O的直径上,点G在大正方形的边AB上.若小正方形的边长为4 cm,求该半圆的半径.

查看答案和解析>>

同步练习册答案