【题目】已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,求证:△CDE是等边三角形.
(2)设OD=t,
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
【答案】(1)见解析;(2) ①见解析; ②t=2或14.
【解析】
(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;
(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;
②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.
(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,
∴∠DCE=60°,DC=EC,
∴△CDE是等边三角形;
(2)①存在,当6<t<10时,
由旋转的性质得,BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,
由(1)知,△CDE是等边三角形,
∴DE=CD,
∴C△DBE=CD+4,
由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,
此时,CD=2,
∴△BDE的最小周长=CD+4=2+4;
②存在,∵当点D与点B重合时,D,B,E不能构成三角形,
∴当点D与点B重合时,不符合题意;
当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,
∴∠BED=90°,
由(1)可知,△CDE是等边三角形,
∴∠DEB=60°,
∴∠CEB=30°,
∵∠CEB=∠CDA,
∴∠CDA=30°,
∵∠CAB=60°,
∴∠ACD=∠ADC=30°,
∴DA=CA=4,
∴OD=OA﹣DA=6﹣4=2,
∴t=2;
当6<t<10时,由∠DBE=120°>90°,
∴此时不存在;
当t>10时,由旋转的性质可知,∠DBE=60°,
又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,
而∠BDC>0°,
∴∠BDE>60°,
∴只能∠BDE=90°,
从而∠BCD=30°,
∴BD=BC=4,
∴OD=14,
∴t=14,
综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.
科目:初中数学 来源: 题型:
【题目】(问题情境)如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;
(结论运用)如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,
(1)试利用射影定理证明;
(2)若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ABMN和正方形ACDE,CN、BE交于点P. 求证:∠ANC = ∠ABE.
应用:Q是线段BC的中点,连结PQ. 若BC = 6,则PQ = ___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.
(1)求A、B两点的坐标及二次函数解析式;
(2)如图2,作直线AD,过点B作AD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:
(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交
于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).
请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.
实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;
函数关系式: (s为常数,s≠0).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连结AD并延长,与BC相交于点E。
(1)若BC=,CD=1,求⊙O的半径;
(2)取BE的中点F,连结DF,求证:DF是⊙O的切线。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com