精英家教网 > 初中数学 > 题目详情
已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是
3
+1
6
3
+1
6
分析:根据两直线平行,同位角相等可得∠B3C3O=∠B2C2O=∠B1C1O=60°,然后解直角三角形求出OC1、C1E、E1E2、E2C2、C2E3、E3E4、E4C3,再求出B3C3,过点A3延长正方形的边交x轴于M,过点A3作A3N⊥x轴于N,先求出A3M,再解直角三角形求出A3N,得出点A3到x轴的距离.
解答:解:如图,∵B1C1∥B2C2∥B3C3
∴∠B3C3O=∠B2C2O=∠B1C1O=60°,
∵正方形A1B1C1D1的边长为1,
∴OC1=
1
2
×1=
1
2

C1E=
3
2
×1=
3
2

E1E2=
1
2
×1=
1
2

E2C2=
1
2
×
3
3
=
3
6

C2E3=E2B2=
1
2

E3E4=
1
2
×
3
3
=
3
6

E4C3=
3
6
×
3
3
=
1
6

∴B3C3=2E4C3=2×
1
6
=
1
3

过点A3延长正方形的边交x轴于M,过点A3作A3N⊥x轴于N,
则A3M=
1
3
+
1
3
×
3
3
=
3+
3
9

A3N=
3+
3
9
×
3
2
=
1+
3
6

∴点A3到x轴的距离是:
3
+1
6

故答案为:
3
+1
6
点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在平面直角坐标系中,点A,点B的坐标分别为A(0,0),B(0,4),点C在x轴上,且△ABC的面积为6,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知在平面直角坐标系xOy中,⊙O的半径为1.
(1)当直线l:y=x+b与⊙O只有一个交点时,求b的值;
(2)当反比例函数y=
kx
的图象与⊙O有四个交点时,求k的取值范围;
(3)试探究当n取不同的数值时,二次函数y=x2+n的图象与⊙O交点个数情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(1,0),经过原点的精英家教网直线交线段AB于点C,过点C作OC的垂线与直线x=1相交于点P,设AC=t,点P的坐标为(1,y),
(1)求点C的坐标(用含t的代数式表示);
(2)求y与t之间的函数关系式和t的取值范围;
(3)当△PBC为等腰三角形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4),直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分,求a的值.

查看答案和解析>>

同步练习册答案