精英家教网 > 初中数学 > 题目详情

已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段BD、CE交于点M.

(1)如图1,若AB=AC,AD=AE

①问线段BD与CE有怎样的数量关系?并说明理由;

②求∠BMC的大小(用α表示);

(2)如图2,若AB=BC=kAC,AD=ED=kAE,则线段BD与CE的数量关系为 _________ ,∠BMC= _________ (用α表示);

(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接EC并延长交BD于点M.则∠BMC= _________ (用α表示).

 

【答案】

(1)①BD=CE   ②180°﹣2α    (2)BD=kCE,90°﹣α     (3)90°+α

【解析】

试题分析:(1)如图1.

①BD=CE,理由如下:

∵AD=AE,∠ADE=α,

∴∠AED=∠ADE=α,

∴∠DAE=180°﹣2∠ADE=180°﹣2α,

同理可得:∠BAC=180°﹣2α,

∴∠DAE=∠BAC,

∴∠DAE+∠BAE=∠BAC+∠BAE,

即:∠BAD=∠CAE.

在△ABD与△ACE中,

∴△ABD≌△ACE(SAS),

∴BD=CE;

②∵△ABD≌△ACE,

∴∠BDA=∠CEA,

∵∠BMC=∠MCD+∠MDC,

∴∠BMC=∠MCD+∠CEA=∠DAE=180°﹣2α;

(2)如图2.

∵AD=ED,∠ADE=α,

∴∠DAE==90°﹣α,

同理可得:∠BAC=90°﹣α,

∴∠DAE=∠BAC,

∴∠DAE+∠BAE=∠BAC+∠BAE,

即:∠BAD=∠CAE.

∵AB=kAC,AD=kAE,

∴AB:AC=AD:AE=k.

在△ABD与△ACE中,

∵AB:AC=AD:AE=k,∠BDA=∠CEA,

∴△ABD∽△ACE,

∴BD:CE=AB:AC=AD:AE=k,∠BDA=∠CEA,

∴BD=kCE;

∵∠BMC=∠MCD+∠MDC,

∴∠BMC=∠MCD+∠CEA=∠DAE=90°﹣α.

故答案为:BD=kCE,90°﹣α;

(3)如右图.

∵AD=ED,∠ADE=α,

∴∠DAE=∠AED==90°﹣α,

同理可得:∠BAC=90°﹣α,

∴∠DAE=∠BAC,即∠BAD=∠CAE.

∵AB=kAC,AD=kAE,

∴AB:AC=AD:AE=k.

在△ABD与△ACE中,

∵AB:AC=AD:AE=k,∠BAD=∠CAE,

∴△ABD∽△ACE,

∴∠BDA=∠CEA,

∵∠BMC=∠MCD+∠MDC,∠MCD=∠CED+∠ADE=∠CED+α,

∴∠BMC=∠CED+α+∠CEA=∠AED+α=90°﹣α+α=90°+α.

故答案为:90°+α.

考点:相似三角形的判定与性质;全等三角形的判定与性质;作图-旋转变换.

点评:本题考查了全等三角形的判定与性质,三角形的外角的性质,相似三角形的判定与性质,作图﹣旋转变换,综合性较强,有一定难度.由于全等是相似的特殊情况,所以做第二问可以借助第一问的思路及方法,做第三问又可以遵照第二问的做法,本题三问由浅入深,层层递进,做好第一问是关键.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)已知:点(x,y)在直线y=-x+1上,且x2+y2=2,求x7+y7的值.
(2)计算:
2007
(
2007
-
2008
)(
2007
-
2009
)
+
2008
(
2008
-
2009
)(
2008
-
2007
)
+
2009
(
2009
-
2008
)(
2009
-
2007
)

(3)已知a、b、c是直角三角形△ABC的角A、B、C所对的边,∠C=90°.求:
1
a+b+c
+
1
b+c-a
+
1
c+a-b
+
1
c-a-b
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段BD、CE交于点M.
(1)如图1,若AB=AC,AD=AE
①问线段BD与CE有怎样的数量关系?并说明理由;
②求∠BMC的大小(用α表示);
(2)如图2,若AB=BC=kAC,AD=ED=kAE,则线段BD与CE的数量关系为
BD=kCE
BD=kCE
,∠BMC=
90°-
1
2
α
90°-
1
2
α
(用α表示);
(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接EC并延长交BD于点M.则∠BMC=
90°+
1
2
α
90°+
1
2
α
(用α表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:点A、B、C在一条直线上,线段AB=6cm,线段BC=4cm,若M,N分别为线段AB、BC的中点,求MN的长.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-相似的判定解答题(带解析) 题型:解答题

已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段BD、CE交于点M.
(1)如图1,若AB=AC,AD=AE

①问线段BD与CE有怎样的数量关系?并说明理由;
②求∠BMC的大小(用α表示);
(2)如图2,若AB=BC=kAC,AD=ED=kAE,则线段BD与CE的数量关系为_________,∠BMC=_________(用α表示);

(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接EC并延长交BD于点M.则∠BMC=_________(用α表示).

查看答案和解析>>

同步练习册答案