精英家教网 > 初中数学 > 题目详情

【题目】(定义)若关于的一元一次方程的解满足,则称该方程为友好方程,例如:方程的解为,而,则方程友好方程

(运用)(1)①,②,③三个方程中,为友好方程的是_________(填写序号);

2)若关于的一元一次方程友好方程,求的值;

3)若关于的一元一次方程友好方程,且它的解为,的值.

【答案】1)②;(2;(3.

【解析】

1)求出方程的解,依次进行判断即可;

2)求出方程的解,根据友好方程的定义,得到,即可求出的值;

3)根据友好方程的定义以及解为,得到,解方程 ,得到,即,通过上面两个式子整理化简即可求出mn的值.

解:(1)①方程的解为,而,因此方程不是友好方程

②方程的解为,而,因此方程友好方程

③方程的解为,而,因此方程不是友好方程

故②正确;

2)方程的解为

∵关于x的一元一次方程友好方程

解得
3)∵方程友好方程,且它的解为

解方程

解得,即

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路 y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:

1)直接写出a的值,并求甲车的速度;

2)求图中线段EF所表示的yx的函数关系式,并直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.

1)四棱柱有   个面,   条棱,   个顶点;

2)六棱柱有   个面,   条棱,   个顶点;

3)由此猜想n棱柱有   个面,   条棱,   个顶点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一个边长为的正方形纸片剪去两个小长方形,得到一个“6”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,

1)这个新长方形的长和宽分别为_________________;(用的代数式表示)

2)若,求这个新长方形的周长.

3)在(2)的条件下,当时,求这个长方形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某日的钱塘江观潮信息如图:

按上述信息,小红将交叉潮形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地交叉潮的潮头离乙地12千米记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.

(1)求m的值,并求出潮头从甲地到乙地的速度;

(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?

(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平整的地面上,有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示:

1)这个几何体是由   个小正方体组成,请画出从正面、左面、上面看到的这个几何体的形状图;

2)若现在你手头还有一些相同的小正方体,如果保持从上面和从左面看到的形状图不变,最多可以再添加________个小正方体.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

查看答案和解析>>

同步练习册答案