精英家教网 > 初中数学 > 题目详情
若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为   
【答案】分析:根据不等式组恰有三个整数解,可得出a的取值范围;联立一次函数及反比例函数解析式,利用二次函数的性质判断其判别式的值的情况,从而确定交点的个数.
解答:解:不等式组的解为:a≤t≤
∵不等式组恰有3个整数解,
∴-2<a≤-1.
联立方程组
得:x2-ax-3a-2=0,
△=a2+3a+2=(a+2-=(a+1)(a+2)
这是一个二次函数,开口向上,与x轴交点为(-2,0)和(-1,0),对称轴为直线a=-
其图象如下图所示:

由图象可见:
当a=-1时,△=0,此时一元二次方程有两个相等的根,即一次函数与反比例函数有一个交点;
当-2<a<-1时,△<0,此时一元二次方程无实数根,即一次函数与反比例函数没有交点.
∴交点的个数为:1或0.
故答案为:1或0.
点评:本题考查了二次函数、反比例函数、一次函数、解不等式、一元二次方程等知识点,有一定的难度.多个知识点的综合运用,是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若关于x的不等式组
x>2n+1
x>n+2
的解集为x>-1,则n的值为(  )
A、3B、-3C、1D、-1

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x的不等式组
x+6
5
x
4
+1…(1)
x+m<0…(2)
的解集为x<4,则m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x的不等式组
x+4>a
x+4
3
x
2
+1
的解集是x>2,则a的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)若关于t的不等式组
t-a≥0
2t+1≤4
,恰有三个整数解,则关于x的一次函数y=
1
4
x-a
的图象与反比例函数y=
3a+2
x
的图象的公共点的个数为
1或0
1或0

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x的不等式组a≤x<2的整数解共有4个,则a的取值范围是
-3<a≤-2
-3<a≤-2

查看答案和解析>>

同步练习册答案