【题目】如图:三角形ABC内接于圆O,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交外接圆O于点D,连接BD,DC,且∠BCA=60°
(1)求∠BED的大小;
(2)证明:△BED为等边三角形;
(3)若∠ADC=30°,圆O的半径为r,求等边三角形BED的边长.
【答案】(1)60°;(2)证明见解析;(3)r.
【解析】
试题(1)根据三角形内角和定理求出∠BAC+∠ABC的度数,再根据角平分线定义求出∠ABE+∠BAE的度数,然后根据三角形的一个外角等于与它不相邻的两个内角的和求解;
(2)根据在同一个圆中,同弧所对的圆周角相等可得∠ADB=∠BCA=60°,再根据三角形的内角和定理求出∠DBE=60°,然后即可得证;
(3)根据∠ADC=30°可以求出∠BDC=90°,从而得到BC是圆的直径,然后求出∠ABC=30°,所以∠CBE=15°,然后求出∠DBC=45°,得到△BDC是等腰直角三角形,边长BD=BC.
试题解析:(1)∵∠BCA=60°,
∴∠BAC+∠ABC=180°-∠BCA=180°-60°=120°,
∵∠BAC与∠ABC的角平分线AE,BE相交于点E,
∴∠ABE+∠BAE=(∠BAC+∠ABC)=×120°=60°,
∴∠BED=∠ABE+∠BAE=60°;
(2)证明:∵∠BCA=60°,
∴∠ADB=∠BCA=60°,
∴∠DBE=180°-∠BED-∠ADB=180°-60°-60°=60°,
∴△BED为等边三角形;
(3)∵∠ADC=30°,∠ADB=60°,
∴∠BDC=∠ADC+∠ADB=30°+60°=90°,
∴BC是⊙O的直径,
∵∠BCA=60°,
∴∠ABC=90°-60°=30°,
∵BE平分∠ABC,
∴∠CBE=15°,
∴∠DBC=∠DBE-∠CBE=60°-15°=45°,
∴BD=BCcos45°=2r×=r.
即等边△BED的边长为r.
科目:初中数学 来源: 题型:
【题目】已知一次函数的图像经过点,与轴相交于点,与轴相交于点,二次函数的图像经过点和点,顶点为,对称轴与一次函数的图像相交于点。
(1)求一次函数的解析式以及点,点的坐标;
(2)求顶点的坐标;
(3)在轴上求一点,使得和相似。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为( )
A.1B.2C.12﹣6D.6﹣6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,1),B(4,2),C(3,5).
(1)求△ABC的面积;
(2)在图中画出△ABC绕点A逆时针旋转90°得到的△A'B'C',并写出点C的对应点C'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为8的正方形ABCD中,E、F分别是边AB、BC上的动点,且EF=6,M为EF中点,P是边AD上的一个动点,则CP+PM的最小值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.
(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.
(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.
(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com