精英家教网 > 初中数学 > 题目详情

【题目】如图:三角形ABC内接于圆O∠BAC∠ABC的角平分线AEBE相交于点E,延长AE交外接圆O于点D,连接BDDC,且∠BCA=60°

1)求∠BED的大小;

2)证明:△BED为等边三角形;

3)若∠ADC=30°,圆O的半径为r,求等边三角形BED的边长.

【答案】160°;(2)证明见解析;(3r

【解析】

试题(1)根据三角形内角和定理求出∠BAC+∠ABC的度数,再根据角平分线定义求出∠ABE+∠BAE的度数,然后根据三角形的一个外角等于与它不相邻的两个内角的和求解;

2)根据在同一个圆中,同弧所对的圆周角相等可得∠ADB=∠BCA=60°,再根据三角形的内角和定理求出∠DBE=60°,然后即可得证;

3)根据∠ADC=30°可以求出∠BDC=90°,从而得到BC是圆的直径,然后求出∠ABC=30°,所以∠CBE=15°,然后求出∠DBC=45°,得到△BDC是等腰直角三角形,边长BD=BC

试题解析:(1∵∠BCA=60°

∴∠BAC+∠ABC=180°-∠BCA=180°-60°=120°

∵∠BAC∠ABC的角平分线AEBE相交于点E

∴∠ABE+∠BAE=∠BAC+∠ABC=×120°=60°

∴∠BED=∠ABE+∠BAE=60°

2)证明:∵∠BCA=60°

∴∠ADB=∠BCA=60°

∴∠DBE=180°-∠BED-∠ADB=180°-60°-60°=60°

∴△BED为等边三角形;

3∵∠ADC=30°∠ADB=60°

∴∠BDC=∠ADC+∠ADB=30°+60°=90°

∴BC⊙O的直径,

∵∠BCA=60°

∴∠ABC=90°-60°=30°

∵BE平分∠ABC

∴∠CBE=15°

∴∠DBC=∠DBE-∠CBE=60°-15°=45°

∴BD=BCcos45°=2r×=r

即等边△BED的边长为r

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数的图像经过点,与轴相交于点,与轴相交于点,二次函数的图像经过点和点,顶点为,对称轴与一次函数的图像相交于点

1)求一次函数的解析式以及点,点的坐标;

2)求顶点的坐标;

3)在轴上求一点,使得相似。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABAC18BC12,正方形DEFG的顶点EFABC内,顶点DG分别在ABAC上,ADAGDG6,则点FBC的距离为( )

A.1B.2C.126D.66

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=(m1x2+2x+m图象与坐标轴有且只有2个交点,则m_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数yax2+bx+c图象的一部分,图象过点A(﹣30),对称轴为x=﹣1.给出四个结论:①b24ac;②2a+b0;③ab+c0;④5ab.其中正确的有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC的顶点坐标分别为A11),B42),C35).

1)求ABC的面积;

2)在图中画出ABC绕点A逆时针旋转90°得到的A'B'C',并写出点C的对应点C'的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°tanA,点DE分别在边ABAC上,DEACDE3DB10.求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为8的正方形ABCD中,EF分别是边ABBC上的动点,且EF6MEF中点,P是边AD上的一个动点,则CP+PM的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,图形G上点Pxy)的纵坐标y与其横坐标x的差yx称为点P坐标差,而图形G上所有点的坐标差中的最大值称为图形G特征值

1)求点A21)的坐标差和抛物线y=﹣x2+3x+4特征值

2)某二次函数=﹣x2+bx+cc≠0)的特征值为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C坐标差相等,求此二次函数的解析式.

3)如图所示,二次函数y=﹣x2+px+q的图象顶点在坐标差2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(73),点O为坐标原点,点Dx轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.

查看答案和解析>>

同步练习册答案