如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴交于负半轴.给出四个结论:①abc<0;②2a+b>0;③a+b+c=0;④a>0.其中正确的有( )
![]()
A.1个 B.2个 C.3个 D.4个
C 解:①∵对称轴在y轴的右侧,
∴a、b异号,
∴ab<0.
又∵抛物线与y轴交于负半轴,
∴c<0,
∴abc>0.
故①错误;
②:如图所示,抛物线开口方向向上,则a>0.
又∵0<﹣
<1,
∴﹣b<2a,
∴2a+b>0.
故②正确;
③把点(1,0)代入函数解析式得到:a+b+c=0,故③正确;
④抛物线开口方向向上,则a>0.
故④正确.
综上所述,正确的个数是3个.
故选:C.
![]()
点评:本题考查了二次函数图象与系数的关系的知识:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
科目:初中数学 来源: 题型:
在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图所示,二次函数y=﹣x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.
(1)求m的值;
(2)求点B的坐标;
(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0)使S△ABD=S△ABC,求点D的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com