精英家教网 > 初中数学 > 题目详情

如图,已知直线AB∥CD,∠C=135°,∠A=45°,则△AEF的形状是


  1. A.
    等腰三角形
  2. B.
    等边三角形
  3. C.
    直角三角形
  4. D.
    等腰直角三角形
D
分析:根据两直线平行,同旁内角互补求出∠BCF=45°,再根据对顶角相等求出∠AFE,从而得到∠A=∠AFE,再求出∠E=90°,然后判断△AEF是等腰直角三角形.
解答:∵AB∥CD,∠C=135°,
∴∠BCF=180°-∠C=180°-135°=45°,
∴∠AFE=∠BCF=45°,
∵∠A=45°,
∴∠A=∠AFE=45°,
∴∠E=180°-45°×2=90°
∴△AEF是等腰直角三角形.
故选D.
点评:本题考查了平行线的性质,等腰直角三角形的判定,是基础题,利用角的度数相等求出相等的角是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于
35
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,已知直线AB、CD相交于点O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB和CD相交于O点,∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)直线AD与BC有何位置关系?请说明理由.
(2)求∠DBE的度数.
(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度数.

查看答案和解析>>

同步练习册答案