.如图,马路的两边CF,DE互相平行,线段CD为人行横道,马路两侧的A,B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路的两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°.
(1)求CD与AB之间的距离;
(2)某人从车站A出发,沿折线A→D→C→B去超市B.求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米.
(参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈)
【考点】解直角三角形的应用.
【分析】(1)设CD与AB之间的距离为x,则在Rt△BCF和Rt△ADE中分别用x表示BF,AE,又AB=AE+EF+FB,代入即可求得x的值;
(2)在Rt△BCF和Rt△ADE中,分别求出BC、AD的长度,求出AD+DC+CB﹣AB的值即可求解.
【解答】解:(1)CD与AB之间的距离为x,
则在Rt△BCF和Rt△ADE中,
∵=tan37°,=tan67°,
∴BF=≈x,AE=≈x,
又∵AB=62,CD=20,
∴x+x+20=62,
解得:x=24,
答:CD与AB之间的距离约为24米;
(2)在Rt△BCF和Rt△ADE中,
∵BC=≈=40,
AD=≈=26,
∴AD+DC+CB﹣AB=40+20+26﹣62=24(米),
答:他沿折线A→D→C→B到达超市比直接横穿马路多走约24米.
科目:初中数学 来源: 题型:
一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的距离y1(km)与行驶的时间x(h)之间的函数关系如图1中线段AB所示;慢车离乙地的距离y2(km)与行驶的时间x (h)之间的函数关系如图1中线段OC所示.根据图象进行以下研究.
(1)分别求线段AB、OC对应的函数解析式y1、y2;
(2)设快、慢车之间的距离为S,求S(km)与慢车行驶时间x(h)的函数关系式,并画出函数的图象;
(3)求快、慢车之间的距离超过135km时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,将△ABC绕点C(0,1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为( )
A.(﹣a,﹣b) B.(﹣a,﹣b﹣1) C.(﹣a,﹣b+1) D.(﹣a,﹣b+2)
查看答案和解析>>
科目:初中数学 来源: 题型:
3. 已知、两地相距50千米,甲于某日下午1时骑自行车从地出发驶往地,乙也同日下午骑摩托车按同路从地出发驶往地,如图所示,图中的折线和线段分别表示甲、乙所行驶的路程(千米)与该日下午时间(时)之间的关系。根据图象回答下列问题:
(1)直接写出:甲出发 小时后,乙才开始出发;乙的速度为 千米/时;甲骑自行车在全程的平均速度为 千米/时。
(2)求乙出发几小时后就追上了甲?
(3)求乙出发几小时后与甲相距10千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com