精英家教网 > 初中数学 > 题目详情

【题目】下列命题中是假命题的是(  )

A. 一组对边平行且相等的四边形是平行四边形

B. 一组对边相等且有一个角是直角的四边形是矩形

C. 一组邻边相等的平行四边形是菱形

D. 一组邻边相等的矩形是正方形

【答案】B

【解析】根据平行四边形和特殊平行四边形的判定法则即可得出答案.

A、一组对边平行且相等的四边形是平行四边形,正确;B、一组对边相等且相等,且有一个角是直角的四边形是矩形,错误;C、一组邻边相等的平行四边形是菱形,正确;D、一组邻边相等的矩形是正方形,正确.故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.

(1)b= ,c= ,点B的坐标为 ;(直接填写结果)

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,点B表示-11,点A表示10,那么离开原点较远的是 点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.

(1)当OC∥AB时,∠BOC的度数为

(2)连接AC,BC,在点C在⊙O运动过程中,△ABC的面积是否存在最大值?并求出△ABC的最大值;

(3)直接写出在(2)的条件下D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.
(1)该班男生和女生各有多少人?
(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等边三角形ABC中,E是AB边上一动点(与A、B不重合),D是CB延长线上的一点,且DE=EC.
(1)当E是AB边上中点时,如图1,线段AE与DB的大小关系是:AEDB(填“>”,“<”或“=”)

(2)当E是AB边上任一点时,小敏与同桌小聪讨论后,认为(1)中的结论依然成立,并进行了如下解答:解:如图2,过点E作EF∥BC,交AC于点F
(请你按照上述思路,补充完成全部解答过程)

(3)当E是线段AB延长线上任一点时,如图3.(1)中的结论是否依然成立?若成立,请证明.若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线交x轴于点A(1,0),交y轴于点B,对称轴是x=2.

(1)求抛物线的解析式;

(2)点P是抛物线对称轴上的一个动点,是否存在点P,使PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D,E,F分别在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.

(1)如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出,并加以证明;若不存在,说明理由;

(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式2x2bxc分解因式为2(x3)(x1),则bc的值为(  )

A. b3c=-1 B. b=-6c2

C. b=-6c=-4 D. b=-4c=-6

查看答案和解析>>

同步练习册答案