精英家教网 > 初中数学 > 题目详情

【题目】已知:A(0,1),B(2,0),C(4,3)
(1)在坐标系中描出各点,画出△ABC.
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.

【答案】
(1)解:如图所示:


(2)解:过点C向x、y轴作垂线,垂足为D、E.

∴四边形DOEC的面积=3×4=12,△BCD的面积= =3,△ACE的面积= =4,△AOB的面积= =1.

∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积

=12﹣3﹣4﹣1=4.


(3)解:当点p在x轴上时,△ABP的面积= =4,即: ,解得:BP=8,

所点P的坐标为(10,0)或(﹣6,0);

当点P在y轴上时,△ABP的面积= =4,即 ,解得:AP=4.

所以点P的坐标为(0,5)或(0,﹣3).

所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).


【解析】(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积;(3)当点p在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积=4,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).
【考点精析】本题主要考查了三角形的面积的相关知识点,需要掌握三角形的面积=1/2×底×高才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)
(2)请选择(1)中的一种情形,写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】几何学中,有点动成_____________,线动成_______________________________动成体的原理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.

(1)求证:AE=AF;

(2)求∠EAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(0,1),点Bx轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示yx的函数关系的图象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把a3﹣2a2+a分解因式的结果是(
A.a2(a﹣2)+a
B.a(a2﹣2a)
C.a(a+1)(a﹣1)
D.a(a﹣1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxcxy的值如下表:( )

x

0.10

0.11

0.12

0.13

0.14

y

-5.6

-3.1

-1.5

0.9

1.8

ax2bxc=0的一个根的范围是( )

A.0.10<x<0.11B.0.11<x<0.12C.0.12<x<0.13D.0.13<x<0.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACD为边BC上一点,以ABBD为邻边作平行四边形ABDE , 连接ADEC . 若BDCD , 求证:四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.

(1)求证:△ACE≌△BCD;

(2)求证:

查看答案和解析>>

同步练习册答案