精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.

(1)求证:∠BFC=∠BEA;

(2)求证:AM=BG+GM。

 

 

(1)证明见解析;(2)证明见解析.

【解析】

试题分析:(1)根据正方形的四条边都相等,AB=BC,又BE=BF,所以△ABE和△CBF全等,再根据全等三角形对应角相等即可证出;

(2)连接DG,根据正方形的性质,AB=AD,∠DAC=∠BAC=45°,AG是公共边,所以△ABG和△ADG全等,根据全等三角形对应边相等,BG=DG,对应角相等∠2=∠3,因为BG⊥AE,所以∠BAE+∠2=90°,而∠BAE+∠4=90°,所以∠2=∠4,因此∠3=∠4,根据GM⊥CF和(1)中全等三角形的对应角相等可以得到∠1=∠BFC=∠2,在△ADG中,∠DGC=∠3+45°,所以DGM三点共线,因此△ADM是等腰三角形,AM=DM=DG+GM,所以AM=BG+GM.

(1)在正方形ABCD中,AB=BC,∠ABC=90°,

在△ABE和△CBF中,

∴△ABE≌△CBF(SAS),

∴∠BFC=∠BEA;

(2)连接DG,

在△ABG和△ADG中,

∴△ABG≌△ADG(SAS),

∴BG=DG,∠2=∠3,

∵BG⊥AE,

∴∠BAE+∠2=90°,

∵∠BAD=∠BAE+∠4=90°,

∴∠2=∠3=∠4,

∵GM⊥CF,

∴∠BCF+∠1=90°,

又∠BCF+∠BFC=90°,

∴∠1=∠BFC=∠2,

∴∠1=∠3,

在△ADG中,∠DGC=∠3+45°,

∴∠DGC也是△CGH的外角,

∴D、G、M三点共线,

∵∠3=∠4(已证),

∴AM=DM,

∵DM=DG+GM=BG+GM,

∴AM=BG+GM.

考点1.正方形的性质;2.全等三角形的判定与性质.

 

练习册系列答案
相关习题

科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题(一)数学试卷(解析版) 题型:填空题

如图,⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P,PC=,则图中阴影部分的面积为 (结果保留π).

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题四数学试卷(解析版) 题型:选择题

的相反数是

A B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题二数学试卷(解析版) 题型:选择题

如图,在平面直角坐标系中,直线y=2x+4与轴、轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿轴正方向平移个单位长度后,点C恰好落在此双曲线上,则的值是( ).

A1 B2 C3 D4

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题二数学试卷(解析版) 题型:选择题

下列运算中,正确的是(  .

A. B. C. D.

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题三数学试卷(解析版) 题型:计算题

计算:

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年重庆市万州区岩口复兴学校九年级下学期期中命题三数学试卷(解析版) 题型:选择题

如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:当x>3时,y<0;3a+b>0;﹣1≤a≤﹣3≤n≤4中,正确的是(  )

A①② B③④ C①④ D①③

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年重庆市九年级3月月考数学试卷(解析版) 题型:解答题

先化简,再求值:,其中为不等式组的整数解.

 

查看答案和解析>>

科目:初中数学 来源:2013-2014学年重庆市九年级下学期期中考试数学试卷(解析版) 题型:选择题

如图,O是ABC的外接圆,OCB=50°,则A的度数等于( )

A.40° B.50° C.60° D.70°

 

查看答案和解析>>

同步练习册答案