【题目】已知二次函数的图象与直线y=x+m交于x轴上一点A(-1,0),二次函数图象的顶点为C(1,-4).
(1)求这个二次函数的解析式;
(2)若二次函数的图象与x轴交于另一点B,与直线y=x+m交于另一点D,求 △ABD的面积.
【答案】(1)y=x2-2x-3;(2)10.
【解析】试题分析:(1)由于已知顶点坐标,则设二次函数的解析式为y=a(x-1)2-4,把A(-1,0)代入求得a即可;(2)令y=x2-2x-3=0,解方程可求得B点坐标,即可求得直线AB解析式,再求出点D坐标,根据三角形面积公式即可求得结论.
解:(1)设二次函数的解析式为y=a(x-1)2-4,
把A(-1,0)代入上式得0=a(-1-1)2-4,
解得a=1,
∴这个二次函数的解析式为y=(x-1)2-4,即y=x2-2x-3;
(2)令y=x2-2x-3=0,
解得x1=-1,x2=3,
∴B(3,0),
把A(-1,0)代入y=x+m得-1+m=0,解得m=1,
∴直线AD解析式为y=x+1,
解方程组得
∴D(4,5),
又∵AB=4,
∴△ABD的面积=×4×5=10.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.
(1)求抛物线的表达式,并求出△ABC的面积;
(2)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;
(3)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+4x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式和顶点坐标;
(2)若P是x轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com