【题目】如图,抛物线y=﹣x2+4x+n经过点A(1,0),与y轴交于点B.
(1)求抛物线的解析式和顶点坐标;
(2)若P是x轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.(直接写出答案)
【答案】(1)抛物线解析式为y=(x2)2+1,顶点坐标为(2,1);
(2)P点的坐标为(﹣+1,0)或(+1,0)或(﹣1,0).
【解析】试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式,把解析式换成顶点式即可求得顶点坐标.
(2)本题要分两种情况进行讨论:
①PA=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
②PB=AB,此时P与A关于y轴对称,由此可求出P点的坐标.
解:(1)∵抛物线y=﹣x2+4x+n经过点A(1,0)
∴n=﹣3
∴y=﹣x2+4x﹣3;
∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,
∴顶点坐标为(2,1);
(2)∵抛物线的解析式为y=﹣x2+4x﹣3,
∴令x=0,则y=﹣3,
∴B点坐标(0,﹣3),AB=,
①当PA=AB时,PA=AB=,
∴OP=PA﹣OA=﹣1或OP=+1.
∴P(﹣+1,0)或(+1,0);
②当PB=AB时,P、A关于y轴对称,
∴P(﹣1,0)
因此P点的坐标为(﹣+1,0)或(+1,0)或(﹣1,0).
科目:初中数学 来源: 题型:
【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=30°.
(1)将图1中的三角尺绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角尺绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第______秒时,边MN恰好与射线OC平行;在第______秒时,直线ON恰好平分锐角∠AOC.(直接写出结果);
(3)将图1中的三角尺绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】扬州市为打造“绿色城市”降低空气中pm2.5的浓度,积极投入资金进行园林绿化工程,已知2014年投资1000万元,预计2016年投资1210万元.若这两年内平均每年投资增长的百分率相同.
(1)求平均每年投资增长的百分率;
(2)经过评估,空气中pm2.5的浓度连续两年较上年下降10%,则两年后pm2.5的浓度比最初下降了百分之几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象与直线y=x+m交于x轴上一点A(-1,0),二次函数图象的顶点为C(1,-4).
(1)求这个二次函数的解析式;
(2)若二次函数的图象与x轴交于另一点B,与直线y=x+m交于另一点D,求 △ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=ax+b(a、b为常数),x与y的部分对应值如右表:
x | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 |
y | 6 | 4 | 2 | 0 | ﹣2 | ﹣4 |
那么方程ax+b=0的解是 , 不等式ax+b>0的解是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com