A. | $\frac{4}{3}π-\sqrt{3}$ | B. | $\frac{4}{3}π-2\sqrt{3}$ | C. | $4π-4\sqrt{3}$ | D. | $\frac{16}{3}π-4\sqrt{3}$ |
分析 过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积-三角形OCD的面积,列式计算即可求解.
解答 解:如图,过O点作OE⊥CD于E,
∵AB为⊙O的切线,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=60°,
∴∠COD=120°,∠OCD=∠ODC=30°,
∴OE=$\frac{1}{2}$OD=2,CE=DE=$\frac{\sqrt{3}}{2}$OD=2$\sqrt{3}$,
∴CD=2CE=4$\sqrt{3}$,
∴S阴影=S扇形COD-S△COD=$\frac{120π×{4}^{2}}{360}$-$\frac{1}{2}$×4$\sqrt{3}$×2=$\frac{16π}{3}$-4$\sqrt{3}$,
故选D.
点评 本题主考查了扇形面积的计算,切线的性质,本题关键是理解阴影部分的面积=扇形OCD的面积-三角形OCD的面积.
科目:初中数学 来源: 题型:选择题
A. | 3$\sqrt{3}$ | B. | $4\sqrt{3}$ | C. | $5\sqrt{3}$ | D. | $6\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com