【题目】如图,已知点A,B的坐标分别为(4,0),(3,2).
![]()
(1)画出△AOB关于原点O对称的图形△COD;
(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;
(3)点D的坐标是 ,点F的坐标是 ,此图中线段BF和DF的关系是 .
科目:初中数学 来源: 题型:
【题目】已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
![]()
证明:∵AD⊥BC,EF⊥BC(已知)
∴______∥______(______)
∴______=______(两直线平行,内错角相等)
______=______(两直线平行,同位角相等)
∵______(已知),∴______
即AD平分∠BAC(______)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中: ①△BDE是等边三角形; ②AE∥BC; ③△ADE的周长是9; ④∠ADE=∠BDC.其中正确的序号是( )
![]()
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,先描出点
,点
.
![]()
(1)描出点
关于
轴的对称点
的位置,写出
的坐标 ;
(2)用尺规在
轴上找一点
,使
的值最小(保留作图痕迹);
(3)用尺规在
轴上找一点
,使
(保留作图痕迹).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,等边
.
(1)如图(1),若
,现有两点
、
分别从点
、点
同时出发,沿三角形的边顺时针运动,已知点
的速度为
,点
的速度为
.当点
第一次到达
点时,
、
同时停止运动.点
,
运动______秒后,
为等腰三角形.
![]()
(2)如图,点
位于等边
的内部,且
.将
绕点
顺时针旋转
,点
的对应点为点
.
①依题意,补全图形;
②若
,
,求
与
的面积比.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,并解决问题:
如图
等边
内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求
的度数.为了解决本题,我们可以将
绕顶点A旋转到
处,此时
≌
,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出
______;
基本运用
![]()
请你利用第
题的解答思想方法,解答下面问题:已知如图
,
中,
,
,E、F为BC上的点且
,求证:
;
能力提升
如图
,在
中,
,
,
,点O为
内一点,连接AO,BO,CO,且
,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1) 令P0(2,-3),O为坐标原点,则d(O,P0)= ;
(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AB=弧AE,BE分别交AD,AC于点F,G.
(1)求证:FA=FG;
(2)若BD=DO=2,求弧EC的长度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);
②对称轴是x=3;
③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com