精英家教网 > 初中数学 > 题目详情
23、阅读理解:如图(1),已知直线m∥n,A、B 为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的面积.
根据上述内容解决以下问题:已知正方形ABCD的边长为4,G是边CD上一点,以CG为边作正方形GCEF.
(1)如图(2),当点G与点D重合时,△BDF的面积为
8

(2)如图(3),当点G是CD的中点时,△BDF的面积为
8

(3)如图(4),当CG=a时,则△BDF的面积为
8
,并说明理由.
探索应用:小张家有一块正方形的土地如图(5),由于修建高速公路被占去一块三角形BCP区域.现决定在DP右侧补给小张一块土地,补偿后,土地变为四边形ABMD,要求补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上,请你在图中画出M点的位置,并简要叙述做法.
分析:(1)(2)(3)连接FC,∠BDC=∠DCF=45°,根据内错角相等,两直线平行可以证明BD∥CF,然后根据题目信息可以得到:△BDF的面积=△ABD的面积;
探索应用:同理,连接BD,过点C作BD的平行线,交BP的延长线于点M,则:△BDM的面积=△BDC的面积,所以补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上.
解答:解:(1)8,
(2)8,
(3)8,
理由如下:连接CF,
∵BD、CF分别为两正方形的对角线,
∴∠BDC=∠DCF=45°,
∴BD∥CF,
∴S△BDF=S△CBD=8;(6分)

探索应用:连接BD,过C点作BD的平行线交BP的延长线于M,连接DM,
则S△BDM=S△CBD
∴S△BDM-S△BDP=S△CBD-S△BDP
即:S△DMP=S△PCB
∴补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上.
点评:本题考查了信息获取能力,读懂题目信息,构造出平行线是利用三角形面积相等进行转化求解三角形的面积的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

25、(1)阅读理解:如图1是二环三角形,可得S=∠A1+∠A2+…+∠A6=360°
理由:连接A1A4
∵∠1+∠2+∠A1OA4=180°
∠A5+∠A6+∠A5OA6=180°
又∵∠A1OA4=∠A5OA6
∴∠1+∠2=∠A5+∠A6
∴∠A2+∠3+∠1+∠2+∠4+∠A3=360°
∴∠A2+∠3+∠A5+∠A6+∠4+∠A3=360°
即S=360°
(2)延伸探究:

①如图2是二环四边形,可得S=∠A1+∠A2+…+∠A8=720°,请你加以证明
②如图3是二环五边形,可得S=
1080
,聪明的你,能根据以上的规律直接写出二环n边形(n≥3的整数)中,S=
360(n-2)
度.(用含n的代数式表示最后的结果)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•台州模拟)阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,结论BP•PC=AB•CD仍成立吗?试说明理由;
(2)拓展应用:如图3,M为AB的中点,AE与BD交于点C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=4
2
,AF=3,求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•咸宁)阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.

查看答案和解析>>

同步练习册答案