【题目】已知关于的方程的解也是关于的方程的解.
(1)求、的值;
(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.
【答案】(1) m=8,n=4;(2) AQ=或
【解析】
(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;
(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;
(1)(m14)=2,
m14=6 m=8,
∵关于m的方程的解也是关于x的方程的解.
∴x=8,
将x=8,代入方程得:
解得:n=4,
故m=8,n=4;
(2)由(1)知:AB=8,=4,
①当点P在线段AB上时,如图所示:
∵AB=8,=4,
∴AP=,BP=,
∵点Q为PB的中点,
∴PQ=BQ=BP=,
∴AQ=AP+PQ=+=;
②当点P在线段AB的延长线上时,如图所示:
∵AB=8,=4,
∴PB=,
∵点Q为PB的中点,
∴PQ=BQ=,
∴AQ=AB+BQ=8+=
故AQ=或.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,∠D=60°,AB=4,E为边BC上的动点,连接AE,作AE的垂直平分线GF交直线CD于F点,垂足为点G,则线段GF的最小值为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将置于平面直角坐标系中,,,.
(1)画出向下平移5个单位得到的,并写出点的坐标;
(2)画出绕点顺时针旋转得到的,并写出点的坐标;
(3)画出以点为对称中心,与成中心对称的,并写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=mx2+6mx+n(m>0)与x轴交于A,B两点(点A在点B左侧),顶点为C,抛物线与y轴交于点D,直线BC交y轴于E,S△ABC:S△AEC = 2∶3.
(1)求点A的坐标;
(2)将△ACO绕点C顺时针旋转一定角度后,点A与B重合,此时点O恰好也在y轴上,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为Sk(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是( )
A. B. C. 16D. 14
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.
(1)求一次函数的解析式.
(2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.
(3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,=60°, AB=2,点E是AB上的动点,作∠EDQ=60°交BC于点Q,点P在AD上,PD=PE.
(1)求证:AE=BQ;
(2)连接PQ, EQ,当∠PEQ=90°时,求的值;
(3)当AE为何值时,△PEQ是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C,点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是( )
A. 1.4 B. 2.5 C. 2.8 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形ABCD中,△EFP的顶点E、F、P分别在线段AB、AD、AC上,且EP=FP.
(1)证明:∠EPF+∠BAD=180°.
(2)若∠BAD=120°(如图2),证明:AE+AF=AP.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com