精英家教网 > 初中数学 > 题目详情

【题目】如图1,菱形ABCD中,△EFP的顶点E、F、P分别在线段AB、AD、AC上,且EP=FP.

(1)证明:∠EPF+∠BAD=180°.

(2)若∠BAD=120°(如图2),证明:AE+AF=AP.

【答案】(1)证明见解析(2)证明见解析

【解析】分析:1)如图1中,作PMADMPNACN.由Rt△PMF≌Rt△PNE,推出MPF=∠NPE,推出EPF=∠MPF,由BAD+∠MPN=360°-∠AMP-∠ANP=180°,推出EPF+∠BAD=180°即可;

2)如图2中,作PMADMPNACN.由Rt△PMF≌Rt△PNE,推出FM=NE,由PA=PAPM=PN,推出Rt△PAM≌Rt△PAN,推出AM=AN,推出AF+AE=AM+FM+AN-EN=2AM,再证明PA=2AM即可解决问题;

详解:(1)如图1中,作PMAD于M,PNAC于N.

四边形ABCD是菱形,

∴∠PAM=∠PAN,

∴PM=PN,

∵PE=PF,

∴Rt△PMF≌Rt△PNE,

∴∠MPF=∠NPE,

∴∠EPF=∠MPF,

∵∠BAD+∠MPN=360°﹣∠AMP﹣∠ANP=180°,

∴∠EPF+∠BAD=180°.

(2)如图2中,作PMAD于M,PNAC于N.

由(1)可知Rt△PMF≌Rt△PNE,

∴FM=NE,

∵PA=PA,PM=PN,

∴Rt△PAM≌Rt△PAN,

∴AM=AN,

∴AF+AE=(AM+FM)+(AN﹣EN)=2AM,

∵∠BAD=120°,

∴∠PAM=60°,易知PA=2AM,

∴AE+AF=PA.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于的方程的解也是关于的方程的解.

1)求的值;

2)若线段,在直线AB上取一点P,恰好使,点QPB的中点,求线段AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OD平分∠BOCOE平分∠AOC

1)若∠BOC=60°,∠AOC=40°,求∠DOE的度数;

2)若∠DOE=n°,求∠AOB的度数;

3)若∠DOE+AOB=180°,求∠AOB与∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD和菱形AEFG开始完全重合,现将菱形AEFG绕点A顺时针旋转,设旋转角∠BAE=α(0°<α<360°),则当α=_____时,菱形的顶点F会落在菱形ABCD的对角线所在的直线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E是正方形ABCD外一点,且DE=CE=,连接AE.

(1)将△ADE绕点D逆时针旋转90°,作出旋转后的图形.

(2)如果∠AED=15°,判断△DEC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解市民获取新闻的最主要途径,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图:

根据以上信息解答下列问题:

(1)这次接受调查的市民总人数是______

(2)扇形统计图中,电视所对应的圆心角的度数是______

(3)请补全条形统计图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116,购买3幅乒乓球拍和2幅羽毛球拍共需204.

(1)每副乒乓球拍和羽毛球拍的单价各是多少元?

(2)若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索发现】

如图,是一张直角三角形纸片,B=60°,小明想从中剪出一个以B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为

【拓展应用】

如图,在ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 .(用含a,h的代数式表示)

【灵活应用】

如图,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(B为所剪出矩形的内角),求该矩形的面积.

【实际应用】

如图,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.

1)请利用树状图列举出三次传球的所有可能情况;

2)求三次传球后,球回到甲脚下的概率;

3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?

查看答案和解析>>

同步练习册答案