【题目】如图,菱形ABCD和菱形AEFG开始完全重合,现将菱形AEFG绕点A顺时针旋转,设旋转角∠BAE=α(0°<α<360°),则当α=_____时,菱形的顶点F会落在菱形ABCD的对角线所在的直线上.
【答案】60°或180°或300°
【解析】分析:分别从当点F在DB的延长线上时,当点F在CA的延长线时,C,O,F共线,当点F在BD的延长线时,去分析求解即可求得答案.
详解:如图(1),当点F在DB的延长线上时,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC,
∴∠AOF=90,
∵AF=AC,
∴OA=AF,
即cos∠CAF=,
∴∠CAF=60;
即旋转角为60;
如图(2),当点F在CA的延长线时,C,O,F共线,
即∠COF=180,
∴旋转角为180;
如图(3),当点F在BD的延长线时,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC,
∴∠AOF=90,
∵AF=AC,
∴OA=AF,
即cos∠CAF=,
∴∠CAF=60;
即旋转角为:36060=300;
故答案为:60或180或300.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=mx2+6mx+n(m>0)与x轴交于A,B两点(点A在点B左侧),顶点为C,抛物线与y轴交于点D,直线BC交y轴于E,S△ABC:S△AEC = 2∶3.
(1)求点A的坐标;
(2)将△ACO绕点C顺时针旋转一定角度后,点A与B重合,此时点O恰好也在y轴上,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C,点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是( )
A. 1.4 B. 2.5 C. 2.8 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在AD的延长线上,下列条件中能判断AB∥CD的是( )
A.∠C=∠CDEB.∠ABD=∠CBDC.∠ABD=∠CDBD.∠C+∠ADC=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC=CD=AD=4,∠DAB=∠B=∠C=∠D=90°,E,F分别是边BC,CD上的点,且CE=BC,F为CD的中点,问△AEF是什么三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将口ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)求证:△ABF≌△ECF
(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形ABCD中,△EFP的顶点E、F、P分别在线段AB、AD、AC上,且EP=FP.
(1)证明:∠EPF+∠BAD=180°.
(2)若∠BAD=120°(如图2),证明:AE+AF=AP.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A在数轴上对应的数为x,点B对应的数为y,且点O为数轴上的原点,且.
(1)点A对应的数为______;点B对应的数为______;线段的长度为_______;
(2)若数轴上有一点C,且,求点C在数轴上对应的数;
(3)若点P从A点出发沿数轴的正方向以每秒2个单位的速度运动,同时Q点从B点出发沿数轴的负方向以每秒4个单位长度的速度运动,运动时间为t秒,当时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com