【题目】如图,已知点A在数轴上对应的数为x,点B对应的数为y,且点O为数轴上的原点,且.
(1)点A对应的数为______;点B对应的数为______;线段的长度为_______;
(2)若数轴上有一点C,且,求点C在数轴上对应的数;
(3)若点P从A点出发沿数轴的正方向以每秒2个单位的速度运动,同时Q点从B点出发沿数轴的负方向以每秒4个单位长度的速度运动,运动时间为t秒,当时,求t的值.
【答案】(1)-5;4;9;(2)-8或7;(3)和.
【解析】
(1)由绝对值和偶次方的非负性即可求出a、b值;
(2)根据AB=9可知点C在点A的左侧或点B的右侧,分点C在点A左侧和点C在点B右侧两种情况考虑,找出AC、BC的长度结合AC+BC=15即可得出关于x的一元一次方程,解之即可得出结论;
(3)根据点P、Q的运动找出OP、OQ的长度,结合OP=2OQ即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.
(1)∵|a+5|+(a+b+1)2=0,
∴a+5=0,a+b+1=0,
∴a=-5,b=4.
∴AB=|4-(-5)|=9,
(2)设点C在数轴上对应的数为x,
∵AB=4-(-5)=9,
∴点C在点A的左侧或点B的右侧,
若点C在点A左侧,则AC=-5-x,BC=4-x,如图1所示.
∴AC+BC=-5-x+4-x=-1-2x=15,
解得:x=-8;
若点C在点B右侧,则AC=x-(-5)=x+5,BC=x-4,
∴AC+BC=x+5+x-4=15,
解得:x=7.
∴点C在数轴上对应的数为-8或7.
(3)OP=|5-2t|,OQ=|4-4t|,如图2所示.
∵OP=2OQ,
∴|5-2t|=2|4-4t|,
解得:t1=,t2=.
∴当OP=2OQ时,t的值为和.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD和菱形AEFG开始完全重合,现将菱形AEFG绕点A顺时针旋转,设旋转角∠BAE=α(0°<α<360°),则当α=_____时,菱形的顶点F会落在菱形ABCD的对角线所在的直线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:
(1)这次接受调查的市民总人数是______;
(2)扇形统计图中,“电视”所对应的圆心角的度数是______;
(3)请补全条形统计图.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.
(1)每副乒乓球拍和羽毛球拍的单价各是多少元?
(2)若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】移动公司推出一款话费套餐活动,资费标准见下表
套餐月费/元 | 套餐内容 | 套餐外资费 | |
主叫限定时间/分钟 | 被叫 | 主叫超时费(元/分钟) | |
58 | 50 | 免费 | 0.25 |
88 | 150 | 0.20 | |
118 | 350 | 0.15 | |
说明:①主叫:主动打电话给别人;被叫:接听别人打进来的电话. ②若办理的是月使用费为58元的套餐,主叫时间不超过50分钟时,当月话费即为58元;主叫时间为60分钟,则当月话费为元. |
小文办理的是月使用费为88元的套餐,亮亮办理的是月使用费为118元的套餐.
(1)①小文当月的主叫时间为220分钟,则该月她的话费为__________元.
②亮亮当月的主叫时间为220分钟,则该月他的话费为____________元.
(2)某月小文与亮亮的主叫时间都为m分钟(),请用含m的代数式表示该月他们的话费差.
(3)11月小文和亮亮的话费相同,但主叫时间比亮亮少100分钟,则小文的主叫时间是_______分钟.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【探索发现】
如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .
【拓展应用】
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 .(用含a,h的代数式表示)
【灵活应用】
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
【实际应用】
如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两辆汽车沿同一路线赶赴距出发地480km的目的地,乙车比甲车晚出发2h(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(km)与时间x(h)之间的函数关系对应的图象(线段AB表示甲车出发不足2h因故障停车检修).请根据图象所提供的信息,解决以下问题:
(1)求乙车所行路程y与时间x之间的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,两车在途中第一次相遇.(写出解题过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )
A. 33 B. 301 C. 386 D. 571
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com