精英家教网 > 初中数学 > 题目详情

【题目】为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116,购买3幅乒乓球拍和2幅羽毛球拍共需204.

(1)每副乒乓球拍和羽毛球拍的单价各是多少元?

(2)若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?

【答案】(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2) 320 元.

【解析】整体分析

(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.

:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,

由题意得,

解得:

答:购买一副乒乓球拍28元,一副羽毛球拍60.

(2)5×28+3×60=320

答:购买5副乒乓球拍和3副羽毛球拍共320元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(10分)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.

(1)求每个篮球和每个排球的销售利润;

(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则△CEF的周长为(
A.8
B.9.5
C.10
D.11.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.

(1)求点D的坐标(用含m的代数式表示);

(2)当△APD是以AP为腰的等腰三角形时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法不正确的是( )
A.某种彩票中奖的概率是 ,买1000张该种彩票一定会中奖
B.了解一批电视机的使用寿命适合用抽样调查
C.若甲组数据的标准差S=0.31,乙组数据的标准差S=0.25,则乙组数据比甲组数据稳定
D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是边长为2的等边三角形,边AO在y轴上,点B1 , B2 , B3 , …都在直线y= x上,则A2017的坐标为( )

A.2015 ,2017
B.2016 ,2018
C.2017 ,2019
D.2017 ,2017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.
(1)求W关于x的函数关系式,并写出自变量x的取值范围;
(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;
(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,甲乙两团队联合购票比分别购票最多节约3400元,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF= , 求BC和BF的长.

查看答案和解析>>

同步练习册答案