精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.

(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

【答案】
(1)解:∵四边形ABCO为矩形,

∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.

由题意,△BDC≌△EDC.

∴∠B=∠DEC=90°,EC=BC=10,ED=BD.

由勾股定理易得EO=6.

∴AE=10﹣6=4,

设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2

解得,x=3,∴AD=3.

∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)

解得

∴抛物线的解析式为:y=﹣ x2+ x


(2)解:方法一:∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,

∴∠DEA=∠OCE,

由(1)可得AD=3,AE=4,DE=5.

而CQ=t,EP=2t,∴PC=10﹣2t.

当∠PQC=∠DAE=90°,△ADE∽△QPC,

= ,即 =

解得t=

当∠QPC=∠DAE=90°,△ADE∽△PQC,

= ,即 =

解得t=

∴当t= 时,以P、Q、C为顶点的三角形与△ADE相似

方法二:∵E(0,6),C(8,0),

∴lEC:y=﹣ x+6,

,EP=2t,

∴Px= t,

∴P( t,﹣ t+6),Q(8﹣t,0),

∵△PQC∽△ADE,且∠ECO=∠AED,

∴PQ⊥OC或PQ⊥PC.

当PQ⊥OC时,Px=Qx,即 t=8﹣t,∴t1=

当PQ⊥PC时,KPQKPC=﹣1,∴t2=


(3)解:方法一:假设存在符合条件的M、N点,分两种情况讨论:

EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;

则:M(4, );而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣ );

②EC为平行四边形的边,则EC MN,设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);

将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时 N(4,﹣38)、M(﹣4,﹣32);

将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,此时 N(4,﹣26)、M(12,﹣32);

综上,存在符合条件的M、N点,且它们的坐标为:

①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4, ),N3(4,﹣

方法二:M,N,C,E为顶点的四边形是平行四边形.设N(4,t),C(8,0),E(0,6),

∴M1(4,6﹣t),同理M2(﹣4,t+6),M3(12,t﹣6),

∴﹣ t,∴t=﹣

×(﹣4)2+ (﹣4)=t+6,∴t=﹣38,

×122+ ×12=t﹣6,∴t=﹣26,

综上,存在符合条件的M、N点,且它们的坐标为:

①M1(4, ),N1(4,﹣ );②M2(12,﹣32),N2(4,﹣26);

③M3(﹣4,﹣32),N3(4,﹣38).


【解析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值.(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小强家有一块三角形菜地,量得两边长分别为,第三边上的高为.请你帮小强计算这块菜地的面积.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一动点从原点出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到(0,1),(1,1),(1,0),(2,0),…那么点的坐标为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长相等的两个正方形ABCDOEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN的面积( )

A. 不变 B. 先增大再减小 C. 先减小再增大 D. 不断增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:EF分别是ABCD上的点,DEAF分别交BC于点GH, AB∥CD,∠A∠D,试说明:(1AF∥ED;2∠BED∠A;(3) ∠1∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图矩形ABCD中,AD=1,CD= ,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ ABC 和△ADE都是等边三角形,点 B ED 的延长线上.

1)求证:△ABD≌△ACE

2)求证:AECE=BE

3)求∠BEC 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,有一块直角三角板XYZ放置在ABC上,恰好三角板XYZ的两条直角边XYXZ分别经过点BC直角顶点XABC内部,若∠A=30,则∠ABC+ACB=_____,∠XBC+XCB=________

2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XYXZ仍然分别经过点BC,直角顶点X还在ABC内部,那么∠ABX+ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+ACX的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△ABCRt△A′B′C′∠C∠C′90°那么在下列各条件中不能判定Rt△ABC≌Rt△A′B′C′的是( )

A. ABA′B′5BCB′C′3 B. ABB′C′5∠A∠B′40°

C. ACA′C′5BCB′C′3 D. ACA′C′5∠A∠A′40°

查看答案和解析>>

同步练习册答案