精英家教网 > 初中数学 > 题目详情

【题目】如图,ADBE四点在同一条直线上,ADBEBCEFBCEF

1)求证:ACDF

2)若CD为∠ACB的平分线,∠A25°,∠E71°,求∠CDF的度数.

【答案】(1)详见解析;(2)42°.

【解析】

1)根据平行线的性质得到∠ABC=∠DEF,再结合题意根据SAS判断△ABC≌△DEF,根据全等三角形的性质即可得到答案;

2)根据全等三角形的性质得到∠ABC=∠E71°,∠A=∠FDE25°,再根据角平分线的性质进行计算即可得到答案.

证明:(1)∵ADBE

ABDE

BCEF

∴∠ABC=∠DEF,且ABBEBCEF

∴△ABC≌△DEFSAS

ACDF

2)∵△ABC≌△DEF

∴∠ABC=∠E71°,∠A=∠FDE25°

∴∠ACB180°﹣∠A﹣∠ABC84°

CD为∠ACB的平分线

∴∠ACD42°=∠BCD

∵∠CDB=∠A+ACD=∠CDF+EDF

∴∠CDF42°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某自行车厂一周计划生产辆自行车,平均每天生产辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负);

星期

增减

根据记录可知前三天共生产________辆;

产量最多的一天比产量最少的一天多生产________辆;

该厂实行计件工资制,每辆车元,超额完成任务每辆奖元,少生产一辆扣元,那么该厂工人这一周的工资总额是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A水果x箱,B水果y.

(1)让小王将水果全部售出共赚了215元,则小王共购进AB水果各多少箱?

(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A, B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.

(1)求条形图中被遮盖的数,并写出册数的中位数;

(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;

(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了   人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2l1交于点C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形一边长为12cm,那么它的两条对角线的长度可以是(  )

A. 8cm和14cm B. 10cm 和14cm C. 18cm和20cm D. 10cm和34cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一个工人师傅要将一个正方形ABCD的余料,修剪成四边形ABEF的零件,其中CE=BCFCD的中点.

1)若正方形的边长为a,试用含a的代数式表示AF2+EF2的值;

2)连结AE,△AEF是直角三角形吗?为什么?(正方形的四条边都相等,四个角都是直角)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,AC=BC,ACB=90°,点D,E分别在AC,BC上,且CD=CE.

(1)如图1,求证:∠CAE=CBD;

(2)如图2,FBD的中点,求证:AECF;

(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求CGF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD平分∠BACDGBC且平分BCDEABEDFACF

1)判断BECF的数量关系,并说明理由;

2)如果AB=8AC=6,求AEBE的长.

查看答案和解析>>

同步练习册答案