精英家教网 > 初中数学 > 题目详情
如图,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B、C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内.
(1)求二次函数的解析式;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.
(4)求出当x为何值时P有最大值?
(1)∵二次函数y=-mx2+4m的顶点坐标为(0,2),
∴4m=2,
即m=
1
2
,所以次抛物线的解析式为:y=-
1
2
x2+2.

(2)∵A点在x轴的负方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴上,
∴ADx轴,
又由抛物线关于y轴对称,
所以D、C点关于y轴分别与A、B对称.
所以AD的长为-2x,AB长为y,
所以周长p=2y-4x=2(-
1
2
x2+2)-4x=-(x+2)2+8.
∵A在x轴的负半轴上,
∴x<0,
∵四边形ABCD为矩形,
∴y>0,
即x>-2.
所以p=-(x+2)2+8,其中-2<x<0.

(3)不存在,
证明:假设存在这样的p,即:
9=-(x+2)2+8,
解此方程得:x无解,所以不存在这样的p.

(4)由p=-(x+2)2+8,且-2<x<0.
故p没有最大值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C经过原点,对称轴x=-3与抛物线相交于第三象限的点M,与x轴相交于点N,且tan∠MON=3.
(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转180°得到抛物线C′,抛物线C′与x轴的另一交点为A,B为抛物线C′上横坐标为2的点.
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E,F分别作x轴的垂线,交折线O-B-A于点E1,F1,再分别以线段EE1,FF1为边作如图2所示的等边△EE1E2,等边△FF1F2.点E以每秒1个单位长度的速度从点O向点A运动,点F以每秒1个单位长度的速度从点A向点O运动.当△EE1E2与△FF1F2的某一边在同一直线上时,求时间t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得直线PE、PF重合.
(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;
(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y,当x为何值时,y取得最大值?
(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某隧道根据地质结构要求其横截面要建成抛物线拱形,计划路面水平宽度AB=12m,根据施工需要,选取AB的中点D为支撑点,搭一个正三角形支架ADC,C点在抛物线上(如图所示),过C竖一根立柱CO⊥AB于O.
(1)求立柱CO的长度;
(2)以O点为坐标原点,AB所在的直线为横坐标轴,自己画出平面直角坐标系,写出A、B、C三点的坐标(坐标轴上的一个长度单位为1m);
(3)求经过A、B、C三点的抛物线方程;
(4)请帮助施工技术员计算该抛物线拱形的高.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在一边靠墙(墙足够长)用120m篱笆围成两间相等的矩形鸡舍,要使鸡舍的总面积最大,则每间鸡舍的长与宽分别是______m、______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

同步练习册答案