精英家教网 > 初中数学 > 题目详情
如图,已知抛物线C经过原点,对称轴x=-3与抛物线相交于第三象限的点M,与x轴相交于点N,且tan∠MON=3.
(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转180°得到抛物线C′,抛物线C′与x轴的另一交点为A,B为抛物线C′上横坐标为2的点.
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E,F分别作x轴的垂线,交折线O-B-A于点E1,F1,再分别以线段EE1,FF1为边作如图2所示的等边△EE1E2,等边△FF1F2.点E以每秒1个单位长度的速度从点O向点A运动,点F以每秒1个单位长度的速度从点A向点O运动.当△EE1E2与△FF1F2的某一边在同一直线上时,求时间t的值.
(1)∵对称轴MN的解析式为x=-3,∴ON=3,
∵tan∠MON=3,∴MN=9,
∴M(-3,-9),
∴设抛物线C的解析式为y=a(x+3)2-9,
∵抛物线C经过原点,∴0=a(0+3)2-9,解得a=1,
∴抛物线C的解析式为y=(x+3)2-9,即y=x2+6x;

(2)①∵将抛物线C绕原点O旋转180°得到抛物线C′,
∴抛物线C与抛物线C′关于原点O对称,
∴抛物线C′的解析式为y=-x2+6x,
∵当y=0时,x=0或6,
∴点A的坐标为(6,0),
∵点B在抛物线C′上,且其横坐标为2,
∴y=-22+6×2=8,即点B的坐标为(2,8).
设直线AB的解析式为y=kx+b,
6k+b=0
2k+b=8

解得
k=-2
b=12

∴直线AB的解析式为y=-2x+12,
∵点P在线段AB上,
∴设点P的坐标为(p,-2p+12),
∴S△APD=
1
2
p(-2p+12)=-p2+6p=-(p-3)2+9,
∴当p=3时,△APD面积的最大值为9;
②如图,分别过点E2、F2作x轴的垂线,垂足分别为G、H.
根据(2)①知,直线OB解析式为y=4x,直线AB解析式为y=-2x+12.
当0<t≤2时,E1在OB上,F1在AB上,
OE=t,EE1=4t,EG=2
3
t,OG=t+2
3
t,GE2=2t,
OF=6-t,FF1=2t,HF=
3
t,OH=6-t-
3
t,HF2=t,
∴E(t,0),E1(t,4t),E2(t+2
3
t,2t),
F(6-t,0),F1(6-t,2t),F2(6-t-
3
t,t).
(Ⅰ)若EE1与FF1在同一直线上,由t=6-t,得t=3,不符合0<t≤2;
(Ⅱ)若EE2与F1F2在同一直线上,易求得直线EE2的解析式为y=
3
3
x-
3
3
t,
将F1(6-t,2t)代入,得2t=
3
3
×(6-t)-
3
3
t,
解得t=
3(
3
-1)
2

(Ⅲ)若E1E2与FF2在同一直线上,易求得E1E2的解析式为y=-
3
3
x+4t+
3
3
t,
将F(6-t,0)代入,得0=-
3
3
×(6-t)+4t+
3
3
t,
解得t=
6
3
-3
11

当2<t≤4时,E1,F1都在AB上,
OE=t,EE1=12-2t,EG=6
3
-
3
t,OG=6
3
-
3
t+t,GE2=6-t,
OF=6-t,FF1=2t,HF=
3
t,OH=6-t-
3
t,HF2=t,
∴E(t,0),E1(t,12-2t),E2(6
3
-
3
t+t,6-t),
F(6-t,0),F1(6-t,2t),F2(6-t-
3
t,t).
(Ⅰ)若EE1与FF1在同一直线上,由t=6-t,得t=3;
(Ⅱ)若EE2与F1F2在同一直线上,易求得直线EE2的解析式为y=
3
3
x-
3
3
t,
将F1(6-t,2t)代入,得2t=
3
3
×(6-t)-
3
3
t,
解得t=
3(
3
-1)
2
,不符合2<t≤4;
(Ⅲ)E1E2与FF2已知在0<t≤2时同一直线上,故当2<t≤4时,E1E2与FF2不可能在同一直线上;
当4<t<6时,由上面讨论的结果,△EE1E2与△FF1F2的某一边不可能在同一直线上.
综上所述,当△EE1E2有一边与△FF1F2的某一边在同一直线上时,t的值为
3(
3
-1)
2
6
3
-3
11
或3.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,Rt△AOB中,∠A=90°,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA=2,AB=8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点.
(1)填空:直线OC的解析式为______;抛物线的解析式为______;
(2)现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线与y轴的交点为D,与AB边的交点为E;
①是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;
②设△BOE的面积为S,求S的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B、C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内.
(1)求二次函数的解析式;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.
(4)求出当x为何值时P有最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)
(1)求抛物线的对称轴及k的值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上的一动点,且在第三象限.
①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c与x轴交于点A、B,与y轴交于点C,OC=4,AO=2OC,且抛物线对称轴为直线x=-3.
(1)求该抛物线的函数表达式;
(2)己知矩形DEFG的一条边DE在线段AB上,顶点F、G分别在AC、BC上,设OD=m,矩形DEFG的面积为S,当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=
2
5
DF
,求出此时点M的坐标;
(3)若点Q是抛物线上一点,且横坐标为-4,点P是y轴上一点,是否存在这样的点P,使得△BPQ是直角三角形?如果存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某同学在探究二次函数图象时,作直线y=m平行于x轴,交二次函数y=x2的图象于A、B两点,作AC、BD分别垂直于x轴,发现四边形ABCD是正方形.
(1)求m的值及A、B两点的坐标;
(2)如图所示,将抛物线“y=x2”改为“y=x2-2x+2”,直线CD经过抛物线的顶点P与x轴平行,其它关系不变,求m的值及A、B两点的坐标.
(3)如图所示,将图中的改为“y=ax2+bx+c(a>0),其它关系不变,请直接写出m的值及A、B两点的坐标(用含有a、b、c的代数式表示)
[提示:抛物线y=ax2+bx+c的顶点坐标为(-
b
2a
4ac-b2
4a
),对称轴为x=-
b
2a
].

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某养殖专业户计划利用房屋的一面墙修造如图所示的长方体水池,培育不同品种的鱼苗.他已准备可以修高为3m.长30m的水池墙的材料,图中EF与房屋的墙壁互相垂直,设AD的长为xm.(不考虑水池墙的厚度)
(1)请直接写出AB的长(用含有x的代数式表示);
(2)试求水池的总容积V与x的函数关系式,并写出x的取值范围;
(3)如果房屋的墙壁可利用的长度为10.5m,请利用函数图象与性质求V的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+2mx-m2-m+3
(1)证明抛物线顶点一定在直线y=-x+3上;
(2)若抛物线与x轴交于M、N两点,当OM•ON=3,且OM≠ON时,求抛物线的解析式;
(3)若(2)中所求抛物线顶点为C,与y轴交点在原点上方,抛物线的对称轴与x轴交于点B,直线y=-x+3与x轴交于点A.点P为抛物线对称轴上一动点,过点P作PD⊥AC,垂足D在线段AC上.试问:是否存在点P,使S△PAD=
1
4
S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏(虚线部分)围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形ABCD的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)你认为该方案是否合理?为什么?

查看答案和解析>>

同步练习册答案