精英家教网 > 初中数学 > 题目详情
如图:抛物线经过A(﹣3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式;
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=﹣

解:(1)设抛物线的解析式为:
y=a(x+3)(x﹣4),
∵B(0,4)在抛物线上,
∴4=a(0+3)(0﹣4),
解得:a=﹣
所以抛物线解析式为:
y=﹣(x+3)(x﹣4),
即y=﹣x2+x+4;
(2)连接DQ,在Rt△AOB中,
AB===5,
∴AD=AB=5,
AC=AO+CO=3+4=7,
CD=AC﹣AD=7﹣5=2,
∵BD垂直平分PQ,
∴PD=QD,PQ⊥BD,
∴∠PDB=∠QDB
∵AD=AB,
∴∠ABD=∠ADB,∠ABD=∠QDB,
∴DQ∥AB,
∴∠CQD=∠CBA.∠CDQ=∠CAB,
∴△CDQ∽△CAB,

=,DQ=
∴AP=AD﹣DP=AD﹣DQ=5﹣=
t=÷1=
∴t的值是
(3)对称轴上存在一点M,使MQ+MC的值最小.理由如下:
∵抛物线的对称轴为x=﹣=
∴A(﹣3,0),C(4,0)两点关于直线x=对称,连接AQ交直线x=于点M,
则MQ+MC的值最小.
过点Q作QE⊥x轴于E,
∴∠QED=∠BOA=90°,
∵DQ∥AB,
∴∠BAO=∠QDE,
∴△DQE∽△ABO,

==
∴QE=,DE=
∴OE=OD+DE=2+=
∴Q(),
设直线AQ的解析式为y=kx+m(k≠0)

解得:
∴直线AQ的解析式为y=x+
联立
解得:
∴M(),
∴在对称轴上存在点M(),使MQ+MC的值最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点,
(1)求抛物线的解析式;
(2)求该抛物线的顶点坐标以及最值;
(3)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•苏州一模)如图,抛物线经过A,C,D三点,且三点坐标为A(-1,0),C(0,5),D(2,5),抛物线与x轴的另一个交点为B点,点F为y轴上一动点,作平行四边形DFBG,
(1)B点的坐标为
(3,0)
(3,0)

(2)是否存在F点,使四边形DFBG为矩形?如存在,求出F点坐标;如不存在,说明理由;
(3)连结FG,FG的长度是否存在最小值?如存在求出最小值;若不存在说明理由;
(4)若E为AB中点,找出抛物线上满足到E点的距离小于2的所有点的横坐标x的范围:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高要市二模)已知:如图,抛物线经过点O、A、B三点,四边形OABC是直角梯形,其中点A在x轴上,点C在y轴上,BC∥OA,A(12,0)、B(4,8).
(1)求抛物线所对应的函数关系式;
(2)D为OA的中点,动点P自A点出发沿A→B→C→O的路线移动,若线段PD将梯形OABC的面积分成1﹕3两部分,求此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线经过A(-2,0)、B(8,0)两点,与y轴正半轴交与点C,且AB=BC,点P为第一象限内抛物线上一动点(不与B、C重合),设点P的坐标为(m,n).
(1)求抛物线的解析式;
(2)点D在BC上,且PD∥y轴,探索
BD•DCPD
的值;
(3)设抛物线的对称轴为l,若以点P为圆心的⊙P与直线BC相切,请写出⊙P的半径R关于m函数关系式,并判断⊙P与直线l的位置关系.

查看答案和解析>>

同步练习册答案