【题目】点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b-2)2=0
(1)求线段AB的长;
(2)如图1 点C在数轴上对应的数为x,且x是方程2x+1=x-5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;
(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM-BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值
【答案】(1)5;(2)点P对应的数是-4.5或3.5;(3)正确的结论是:PM-BN的值不变,且值为2.5.
【解析】
试题分析:(1)利用非负数的性质求出a与b的值,即可确定出AB的长;(2)求出已知方程的解确定出x,得到C表示的点,设点P在数轴上对应的数是m,由PA+PB=BC+AB确定出P位置,即可做出判断;(3)设P点所表示的数为n,就有PN=n+3,PB=n-2,根据条件就可以表示出PM=,BN=×(n-2),再分别代入①PM-BN和②PM+BN求出其值即可.
试题解析:(1)∵|a+3|+(b-2)2=0,
∴a+3=0,b-2=0,
∴a=-3,b=2,
∴AB=|-3-2|=5.
答:AB的长为5;
(2)∵2x+1=x-5,
∴x=-4,
∴BC=6.
设点P在数轴上对应的数是m,
∴PA+PB=BC+AB=×6+5=8,
当P在B点右侧时
5+2BP=8,
BP= ,
∴点P对应的数为+2=。
当P在B点左侧时
5+2AP=8,
AP= ,
∴点P对应的数为-3-=。
∴点P对应的数是-4.5或3.5;
(3)设P点所表示的数为n,
∴PN=n+3,PB=n-2.
∵PA的中点为M,
∴PM=PN=
N为PB的三等分点且靠近于P点,
∴BN=PB=×(n-2).
∴PM-BN=-××(n-2)=(不变).
②PM+BN=+××(n-2)=n-(随P点的变化而变化).
∴正确的结论是:PM-BN的值不变,且值为2.5.
科目:初中数学 来源: 题型:
【题目】为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用树状图列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某医院各部门的示意图,横向表示的是楼层,纵向表示的是门号,例如:院长室在4楼3门,我们用(4,3)来表示其位置,试根据上面方法,结合图形,完成下面问题:
(1)儿科诊室可以表示为 ;
(2)口腔科诊室在 楼 门;
(3)图形中显示,与院长室同楼层的有 ;
(4)与神经科诊室同楼层的有 ;
(5)表示为(1,2)的诊室是 ;
(6)表示为(3,5)的诊室是 ;
(7)3楼7门的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.
(1)填空:∠OBC+∠ODC= ;
(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:
(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com