【题目】某公司在两地分别库存有挖掘机16台和12台,现在运往甲、乙两地支援建设,其中甲地需要15台,乙地需要13台.从地运一台到甲、乙两地的费用分别是500元和400元;从地运一台到甲、乙两地费用分别是300元和600元,设从地运往甲地台挖掘机.
(1)请补全下表,并求出运这批挖掘机的总费用是多少?
甲 | 乙 | 总计 | |
台 | ____________台 | 16台 | |
_______________台 | ____________台 | 12台 | |
总计 | 15台 | 13台 | 28台 |
(2)当从地运往甲地5台挖掘机时,运这批挖掘机的总费用是多少?
(3)怎样安排运输方案,可使运这批挖掘机的总费用最少,最少费用是多少?
【答案】(1),,;元;(2)总费用是11100元;(3)地运往甲3台,运往乙13台,地运往甲12台时,总运费最少,最少运费为:10300元.
【解析】
(1)直接根据条件补全表格,然后根据运送挖掘机的总费用=A地运往甲的费用+B地运往甲的费用+A地运往乙的费用+B地运往乙的费用,列式计算即可;
(2)把x=5代入(1)中求得的式子计算即可;
(3)根据(1)中总费用的式子分析当x的值发生变化时的变化规律,即可求出最小费用.
解:(1)∵A有挖掘机16台,运往甲x台,
∴A运往乙(16-x)台,B运往甲(15-x)台,
∵B有挖掘机12台,
∴B运往乙12-(15-x)=(x-3)台;
总费用为:
=(元);
故答案是:,,;元
(2)当时,(元),
即从地运往甲地5台挖掘机时,运这批挖掘机的总费用是11100元.
(3)因为总费用为元,所以越小,总运费就越少,
又因为运输的台数不能是负数,所以最小取3,
即地运往甲3台,运往乙13台,地运往甲12台时,总运费最少,
最少运费为:元.
科目:初中数学 来源: 题型:
【题目】学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.
(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?
(2)为了尽快完成植树任务,现调m人去两处支援,其中,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.
(1)求m的值;
(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下内容并回答问题:
如图1,在平面直角坐标系xOy中,有一个△OEF,要求在△OEF内作一个内接正方形ABCD,使正方形A,B两个顶点在△OEF的OE边上,另两个顶点C,D分别在EF和OF两条边上.
小丽感到要使四边形的四个顶点同时满足上述条件有些困难,但可以先让四边形的三个顶点满足条件,于是她先画了一个有三个顶点在三角形边上的正方形(如图2).接着她又在△OEF内画了一个这样的正方形(如图3).她发现如果再多画一些这样的正方形,就能发现这些点C位置的排列图形,根据这个图形就能画出满足条件的正方形了.
(1)请你也实验一下,再多画几个这样的正方形,猜想小丽发现这些点C排列的图形是 ;
(2)请你参考上述思路,继续解决问题:如果E,F两点的坐标分别为E(6,0),F(4,3).
①当A1的坐标是(1,0)时,则C1的坐标是 ;
②当A2的坐标是(2,0)时,则C2的坐标是 ;
③结合(1)中猜想,求出正方形ABCD的顶点D的坐标,在图3中画出满足条件的正方形ABCD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在坐标系下画出函数的图像,
(1)正比例函数的图像与图像交于A,B两点,A在B的左侧,画出的图像并求A,B两点坐标
(2)根据图像直接写出时自变量x的取值范围
(3)与x轴交点为C,求的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘(如下图),并规定:购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、绿、黄、白区域,那么顾客就可以分别得到80元、30元、10元、0元的购物券,凭购物券仍然可以在商场购物;如果顾客不愿意转转盘,那么可以直接获得购物券10元.
(1)每转动一次转盘所获购物券金额的平均数是多少?
(2)若在此商场购买100元的货物,那么你将选择哪种方式获得购物券?
(3)小明在家里也做了一个同样的转盘做实验,转10次后共获得购物券96元,他说还是不转转盘直接领取购物券合算,你同意小明的说法吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.
(1)如图1,若∠BOD=25°,则∠AOC= °;若∠AOC=125°,则∠BOD= °;
(2)如图2,若∠BOD=50°,则∠AOC= °;若∠AOC=140°,则∠BOD= °;
(3)猜想∠AOC与∠BOD的大小关系: ;并结合图(1)说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:()﹣2﹣+(﹣4)0﹣cos45°.
【答案】1
【解析】试题分析:把原式的第一项根据负整数指数幂的意义化简,第二项根据算术平方根的定义求出9的算术平方根,第三项根据零指数公式化简,最后一项利用特殊角的三角函数值化简,合并后即可求出值.
试题解析:原式=4﹣3+1﹣
=2﹣1
=1.
【题型】解答题
【结束】
16
【题目】《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地
点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:
(1)该校本次调查中,共调查了多少名学生?
(2)请将两个统计图补充完整;
(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com