精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=x2+2m+1x+m2﹣1)有最小值﹣2,则m=________

【答案】

【解析】试题解析:∵二次函数有最小值﹣2

y=

解得:m=.

型】填空
束】
19

【题目】如图,已知ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)

(1)画出ABC绕点O逆时针旋转90°后的A1B1C1,并写出点A1的坐标;

(2)画出ABC绕点O逆时针旋转180°后的A2B2C2,并写出点A2的坐标;

(3)直接回答:AOB与A2OB2有什么关系?

【答案】(1)作图见解析,(-4,-2);(2)作图见解析,(2,-3);(3)相等.

【解析】

试题分析:(1)根据旋转的性质作图,写出点的坐标;

根据旋转的性质作图,写出点的坐标;

(3)根据旋转的性质得出结论.

试题解析:(1)作图如下,点A1的坐标(-4,-2).

(2)作图如下,点A2的坐标(2,-3).

(3)相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.

(1)求抛物线的函数解析式;

(2)求△ABC的面积;

(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,上有点D,分别以为边作等边和等腰,边交于点H,点F延长线上且,连接.求证:

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为( )

A. π-4 B. π-1 C. π-2 D. -2

【答案】C

【解析】试题解析:∵∠BAC=45°,

∴∠BOC=90°,

∴△OBC是等腰直角三角形,

OB=2,

∴△OBCBC边上的高为:OB=

BC=2

S阴影=S扇形OBC﹣SOBC=.

故选C.

型】单选题
束】
10

【题目】夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为(  )

A.8m B.6.4m C.4.8m D.10m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,延长线上一点,点上.且

1)求证:

2)若,则度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须测量MN两点之间的直线距离.选择测量点ABC,点BC分别在AMAN上,现测得AM1千米,AN1.8千米,AB54米,BC45米,AC30米,求MN两点之间的直线距离.

【答案】MN两点之间的直线距离为1500米.

【解析】试题分析:先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.

试题解析:在ABCAMN中, =,又∵∠A=A

∴△ABC∽△AMN,即

解得:MN=1500米,

答:MN两点之间的直线距离是1500米;

考点:相似三角形的应用.

型】解答
束】
23

【题目】如图,在ADC中,点B是边DC上的一点,∠DAB=C .若ADC的面积为18cm,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,是矩形内一动点,且,则的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条渔船某时刻在位置A观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的抛物线对称轴是直线x=1,与x轴有两个交点,与y轴交点坐标是(03),把它向下平移2个单位后,得到新的抛物线解析式是 y=ax2+bx+c,以下四个结论:

b2﹣4ac0abc04a+2b+c=1a﹣b+c0中,判断正确的有(

A. ②③④ B. ①②③ C. ②③ D. ①④

查看答案和解析>>

同步练习册答案