精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.

(1)求证:CD是⊙O的切线.
(2)若 ,求∠E的度数.
(3)连接AD,在(2)的条件下,若CD= ,求AD的长.

【答案】
(1)证明:如图1,连接OC,AC,CG,

∵AC=CG,

∴∠ABC=∠CBG,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠OCB=∠CBG,

∴OC∥BG,

∵CD⊥BG,

∴OC⊥CD,

∴CD是⊙O的切线


(2)解:∵OC∥BD,

∴△OCF∽△BDF,△EOC∽△EBD,

∵OA=OB,

∴AE=OA=OB,

∴OC= OE,

∵∠ECO=90°,

∴∠E=30°


(3)解:如图2,过A作AH⊥DE于H,

∵∠E=30°

∴∠EBD=60°,

∴∠CBD= EBD=30°,

∵CD=

∴BD=3,DE=3 ,BE=6,

∴AE= BE=2,

∴AH=1,

∴EH=

∴DH=2

在Rt△DAH中,AD= = =


【解析】(1)连接OC,AC,CG,由圆周角定理,得出∠ABC=∠CBG,再根据同圆的半径相等机等量代换求得∠OCB=∠CBG,根据平行线的判定得到OC∥BG,由已知CD⊥BG,得出OC⊥CD,即可证得结论。
(2)由OC∥BD,得出△OCF∽△BDF,△EOC∽△EBD,得出对应边成比例,再根据直角三角形的性质,可求出∠E的度数。
(3)过A作AH⊥DE于H,通过解直角三角形求出BD、BE、DE的长,在Rt△DAH中,根据勾股定理求出AD的长。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,AB=13,AD=10,将ABCD沿AE翻折后,点B恰好与点C重合,则点C到AD的距离为(
A.5
B.12
C.3
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某检修小组乘一辆检修车沿一段东西方向铁路检修,规定向东走为正,向西走为负,小组的出发地记为M,某天检修完毕时,行走记录(单位:千米)如下:

+12-5-9+10-4+15-9+3-6-3-7

(1)问收工时,检修小组距出发地M有多远?在东侧还是西侧?

(2)若检修车每千米耗油0.2升,求从出发到收工时检修车共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图8中图,两个等边ABDCBD的边长均为1,将ABD沿AC方向向

右平移到ABD的位置得到图,则阴影部分的周长为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点EAB上,点DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于点F,试判断△AFC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为(
A.12
B.15
C.16
D.18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区(如图1),要求两个大棚之间有间隔4米的路,设计方案如图2,已知每个大棚的周长为44米.

(1)求每个大棚的长和宽各是多少?

(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元,方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?

查看答案和解析>>

同步练习册答案