【题目】如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.
(1)试判断△PMN的形状,并证明你的结论;
(2)若CD=5,AC=12,求△PMN的周长.
【答案】(1)△PMN为等腰直角三角形. 见详解 (2)13+.
【解析】
(1) 由等腰Rt△ABC和△CDE证得△BCE≌△ACD,由M,N,P分别为AB,DE,BD的中点,得PN∥BE,PN=BE,PM∥AD,PM=AD,证得△PMN为等腰三角形,再由∠BPM=∠BDA且∠BDA+∠DAC=90°,所以∠BPM+∠EBP=90°,所以∠BFP=90°,再根据平行的性质即可求解.
(2) 因为Rt△ACD,所以根据勾股定理求得AD,再因为PM=AD,求得PM=PN=,再根据求得的△PMN为等腰直角三角形,勾股定理求得MN,最后相加即可求解.
(1)△PMN为等腰直角三角形.
证明:在等腰Rt△ABC和等腰Rt△ECD中,AC=BC,CD=CE,易得△BCE≌△ACD.
∴BE=AD,∠CBE=∠DAC.
又∵M,N,P分别为AB,DE,BD的中点,
∴PN∥BE,PN=BE,PM∥AD,PM=AD.
又∵BE=AD,
∴PM=PN.
又∵PM∥AD,
∴∠BPM=∠BDA且∠BDA+∠DAC=90°,
∴∠BPM+∠EBP=90°,
∴∠BFP=90°.
又∵BE∥PN,
∴∠FPN=90°.
∴△PMN为等腰直角三角形.
(2)在Rt△ACD中,CD=5,AC=12,由勾股定理得
AD=13,
∴PM=PN=,MN=,
∴C△PMN=++=13+.
科目:初中数学 来源: 题型:
【题目】如图,AB=AE,∠B=∠E,BC=ED,点F是CD的中点,
(1)AC与AD相等吗?为什么?
(2)AF与CD的位置关系如何?说明理由;
(3)若P为AF上的一点,那么PC与PD相等吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的图角如图3,则下列结论:①abc>0;②a+b+c=2;③a>;④b<1.其中正确的结论是( )
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮和小芳都想参加学校杜团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去等加活动:将一个转盘9等分,分别标上1至9九个号码,随意转动转盘,
若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新特动转盘.
(1)转盘转到2的倍数的概率是多少?
(2)你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转, DE,DF分别交线段AC于点M,K.
(1)观察: ①如图2、图3,当∠CDF=0° 或60°时,AM+CK_______MK(填“>”,“<”或“=”).
②如图4,当∠CDF=30° 时,AM+CK___MK(只填“>”或“<”).
(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK_______MK,证明你所得到的结论.
(3)如果,请直接写出∠CDF的度数和的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,,为边的中点,,绕点旋转,它的两边分别交和(或它们的延长线)于,.
(1)当于时(如图1),可得______________.
(2)当与不垂直时(如图2),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出,,的关系.
(3)当点在延长线上时(如图3),第(1)小题得到的结论成立吗?若成立,请给予证明;若不成立,请直接给出,,的关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com