Èçͼ¢Ù£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬Öܳ¤Îªp£®D1£¬E1£¬F1·Ö±ðÊÇ¡÷ABCÈý±ßµÄÖе㣬Á¬½ÓD1E1£¬E1F1£¬F1D1£¬¿ÉµÃ¡÷D1E1F1£®
£¨1£©ÓÃp±íʾ¡÷D1E1F1µÄÖܳ¤ÊÇ
1
2
p
1
2
p
£»
£¨2£©µ±D2£¬E2£¬F2·Ö±ðÊÇ¡÷D1E1F1Èý±ßµÄÖе㣬Èçͼ¢Ú£¬Ôò¡÷D2E2F2µÄÖܳ¤ÊÇ
1
4
p
1
4
p
£»£¨Óú¬pµÄʽ×Ó±íʾ£©
£¨3£©°´ÕÕÉÏÊö˼·̽Ë÷ÏÂÈ¥£¬µ±Dn£¬En£¬Fn·Ö±ðÊÇ¡÷Dn-1En-1Fn-1Èý±ßµÄÖеãʱ£¨nΪÕýÕûÊý£©£¬ÔòDnEnFnµÄÖܳ¤ÊÇ
1
2n
p
1
2n
p
£®£¨Óú¬n¡¢pµÄʽ×Ó±íʾ£©
·ÖÎö£º£¨1£©¸ù¾ÝÈý½ÇÐÎÖÐλÏß¶¨ÀíÒ×µÃËùÇóµÄÈý½ÇÐεĸ÷±ß³¤ÎªÔ­Èý½ÇÐθ÷±ß³¤µÄÒ»°ë£¬ÄÇôËùÇóµÄÈý½ÇÐεÄÖܳ¤¾ÍµÈÓÚÔ­Èý½ÇÐÎÖܳ¤µÄÒ»°ë£»
£¨2£©ÓÉ£¨1£©¿ÉÖªÔò¡÷D2E2F2µÄÖܳ¤ÊÇ¡÷D1E1F1µÄÖܳ¤µÄÒ»°ë£»
£¨3£©°´ÕÕÉÏÊö˼·̽Ë÷ÏÂÈ¥£¬µ±Dn£¬En£¬Fn·Ö±ðÊÇ¡÷Dn-1En-1Fn-1Èý±ßµÄÖеãʱ£¨nΪÕýÕûÊý£©£¬ÔòDnEnFnµÄÖܳ¤ÊÇ
1
2n
p
£®
½â´ð£º½â£º£¨1£©½â£º¡ßµãD1¡¢E1¡¢F1·Ö±ðÊÇAB¡¢BC¡¢ACµÄÖе㣬
¡àD1E1=
1
2
AC£¬D1F1=
1
2
BC£¬E1F1=
1
2
AB£¬
¡à¡÷D1E1F1µÄÖܳ¤ÊÇ
1
2
£¨AB+BC+AC£©=
1
2
p£¬
¹Ê´ð°¸Îª£º
1
2
p
£»

£¨2£©ÓÉ£¨1£©¿ÉÖª¡÷D2E2F2µÄÖܳ¤ÊÇ¡÷D1E1F1µÄÖܳ¤µÄÒ»°ë£»
¼´Îª
1
4
p
£¬
¹Ê´ð°¸Îª
1
4
p
£»

£¨3£©°´ÕÕÉÏÊö˼·̽Ë÷ÏÂÈ¥£¬Ã¿Ò»¸öеÄСÈý½ÇÐζ¼ÊÇǰһ¸öµÄ
1
2
¼´
1
2n
p
£¬
¹Ê´ð°¸Îª£º
1
2n
p
£®
µãÆÀ£º±¾Ì⿼²éÁËÈý½ÇÐεÄÖÐλÏß¶¨Àí£¬ÖÐλÏßÊÇÈý½ÇÐÎÖеÄÒ»ÌõÖØÒªÏ߶Σ¬ÓÉÓÚËüµÄÐÔÖÊÓëÏ߶εÄÖе㼰ƽÐÐÏß½ôÃÜÏàÁ¬£¬Òò´Ë£¬ËüÔÚ¼¸ºÎͼÐεļÆËã¼°Ö¤Ã÷ÖÐÓÐ׏㷺µÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬Ãæ»ýΪ1£®D¡¢E¡¢F·Ö±ðÊÇ¡÷ABCÈý±ßÉϵĵ㣬ÇÒAD=BE=CF=
1
2
AB£¬Á¬½ÓDE£¬EF£¬FD£¬¿ÉµÃ¡÷DEF£¬²¢¼Ç¡÷DEFµÄÃæ»ýΪS1£»µ±AD=BE=CF=
1
3
ABʱ£¬Èçͼ2£¬²¢¼Ç¡÷DEFµÄÃæ»ýΪS2£»°´ÕÕÉÏÊö˼·̽Ë÷ÏÂÈ¥£¬µ±AD=BE=CF=
1
10
ABʱ£¬¡÷DEFµÄÃæ»ýS9=
 
£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄÏÆ½Ä£Ä⣩ÔÚ¡÷ABCÖУ¬DΪACµÄÖе㣬½«¡÷ABDÈÆµãD˳ʱÕëÐýת¦Á¡ã£¨0£¼¦Á£¼360£©µÃµ½¡÷DEF£¬Á¬½ÓBE¡¢CF£®
£¨1£©Èçͼ£¬Èô¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬BEÓëCFÓкÎÊýÁ¿¹ØÏµ£¿Ö¤Ã÷ÄãµÄ½áÂÛ©r
£¨2£©Èô¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬µ±¦ÁµÄֵΪ¶àÉÙʱ£¬ED¡ÎAB£¿
£¨3£©Èô¡÷ABC²»ÊǵȱßÈý½ÇÐÎʱ£¬£¨1£©ÖнáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¿Èô²»³ÉÁ¢£¬ÇëÌí¼ÓÒ»¸öÌõ¼þ£¬Ê¹µÃ½áÂÛ³ÉÁ¢£®£¨²»±ØÖ¤Ã÷£¬²»ÔÙÌí¼ÓÆäËüµÄ×ÖĸºÍÏ߶Σ©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£º¡ÑOÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬µãMΪ¡ÑOÉÏÒ»µã£®
£¨1£©Èçͼ£¬Èô¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬BM=1£¬CM=2£¬ÇóAMµÄ³¤£»
£¨2£©Èô¡÷ABCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏBAC=90¡ã£¬BM=a£¬CM=b£¨ÆäÖÐb£¾a£©£¬Ö±½Óд³öAMµÄ³¤£¨Óú¬ÓÐa£¬bµÄ´úÊýʽ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

̽Ë÷Ìâ
£¨1£©ÒÑÖª£ºÈçͼ1£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬DΪACÉÏÒ»µã£¬ÒÔBDΪһ±ß×÷µÈ±ß¡÷DBE£¬Á¬½ÓAE£¬ÊÔÈ·¶¨AC¡¢AD¡¢AEÖ®¼äµÄ¹ØÏµ²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮
£¨2£©Èç¹ûDΪACÑÓ³¤ÏßÉÏÒ»µã£¬Èçͼ2£¬ÊÔÈ·¶¨AC¡¢AD¡¢AEÖ®¼äµÄ¹ØÏµ£¬²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬Ãæ»ýΪS£®D1¡¢E1¡¢F1·Ö±ðÊÇ¡÷ABCÈý±ßÉϵĵ㣬ÇÒAD1=BE1=CF1=
1
2
AB£¬Á¬½ÓD1E1¡¢E1F1¡¢F1D1£¬¿ÉµÃ¡÷D1E1F1ÊǵȱßÈý½ÇÐΣ¬´Ëʱ¡÷AD1F1µÄÃæ»ýS1=
1
4
S£¬¡÷D1E1F1µÄÃæ»ýS1=
1
4
S£®
£¨1£©µ±D2¡¢E2¡¢F2·Ö±ðÊǵȱߡ÷ABCÈý±ßÉϵĵ㣬ÇÒAD2=BE2=CF2=
1
3
ABʱÈçͼ2£¬
¢ÙÇóÖ¤£º¡÷D2E2F2ÊǵȱßÈý½ÇÐΣ»
¢ÚÈôÓÃS±íʾ¡÷AD2F2µÄÃæ»ýS2£¬ÔòS2=
 
£»ÈôÓÃS±íʾ¡÷D2E2F2µÄÃæ»ýS2¡ä£¬ÔòS2¡ä=
 
£®
£¨2£©°´ÕÕÉÏÊö˼·̽Ë÷ÏÂÈ¥£¬²¢Ìî¿Õ£º
µ±Dn¡¢En¡¢Fn·Ö±ðÊǵȱߡ÷ABCÈý±ßÉϵĵ㣬ADn=BEn=CFn=
1
n+1
ABʱ£¬£¨nΪÕýÕûÊý£©¡÷DnEnFnÊÇ
 
Èý½ÇÐΣ»
ÈôÓÃS±íʾ¡÷ADnFnµÄÃæ»ýSn£¬ÔòSn=
 
£»ÈôÓÃS±íʾ¡÷DnEnFnµÄÃæ»ýSn¡ä£¬ÔòS¡än=
 
£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸