【题目】如图,在中,,,,过点作的平行线与的平分线交于点,与交于点,则的长为( )
A.8B.C.10D.
【答案】D
【解析】
首先根据等腰三角形的性质得出∠ABC=∠ACB,然后根据角平分线的性质得出∠ABE=∠CBE=36°,再由平行线的性质得出∠E=∠CBE=36°,进而得出∠ABE=∠E,AB=AE,再由∠ADE=∠BDC=∠BAC+∠ABE=72°得出∠CAE=∠ACB=72°,AB=DE,BD=BC,进而得出BE=BD+DE=AB+BC,最后运用三角函数即可得出BE.
∵在中,,,
∴∠ABC=∠ACB==72°
又∵BE为∠ABC的角平分线
∴∠ABE=∠CBE=36°
又∵AE∥BC
∴∠E=∠CBE=36°
∴∠ABE=∠E
∴AB=AE
又∵∠ADE=∠BDC=∠BAC+∠ABE=72°
∴∠CAE=∠ACB=72°
∴AE=DE,BD=BC
∴AB=DE,BD=BC
∴BE=BD+DE=AB+BC
又∵
∴BE=
故答案为D.
科目:初中数学 来源: 题型:
【题目】如图,已知△AOB和△A1OB1是以点O为位似中心的位似图形,且△AOB和△A1OB1的周长之比为1:2,点B的坐标为(-1,2),则点B1的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,AD=8,点E是边AD上的一个动点,把△BAE沿BE折叠,点A落在A′处,如果A′恰在矩形的对角线上,则AE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=6,AB=10,一个三角形的直角顶点E是边AB上的一动点,一直角边过点D,另一直角边与BC交于F,若AE=x,BF=y,则y关于x的函数关系的图象大致为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠C=90°,AB=1,tanA=,过AB边上一点P作PE⊥AC于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学课上,老师要求在一个已知的中,利用尺规作出一个菱形.
(1)小明的作法如下:如图1,连接,作的垂直平分线分别交,于点,,连接,.请你判断小明的作法是否正确;若正确,说明理由;若不正确,请你作出符合条件的菱形;
(2)小亮的作法:如图2,分别作,的平分线,,分别交,于点,,连接,则四边形是菱形.请你直接判断小亮的作法是否正确.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂按用户需求生产一种产品,成本每件20万元,规定每件售价不低于成本,且不高于40万元。经市场调查,每年的销售量y(件)与每件售价x(万元)满足一次函数关系,部分数据如下表:
售价x(万元/件) | 25 | 30 | 35 |
销售量y(件) | 50 | 40 | 30 |
(1)求y与x之间的函数表达式;
(2)设商品每年的总利润为W(万元),求W与x之间的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少万元时获得最大利润,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,⊙O1与x轴相切于点A(﹣3,0),与y轴相交于B、C两点,且BC=8,连接AB.
(1)求证:∠ABO1=∠ABO;
(2)求AB的长;
(3)如图2,⊙O2经过A、B两点,与y轴的正半轴交于点M,与O1B的延长线交于点N,求出BM﹣BN的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com