精英家教网 > 初中数学 > 题目详情
(2010•烟台)如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.
(1)求证:DE⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.

【答案】分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.
(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.
解答:(1)证明:连接OD.
∵O为AB中点,D为BC中点,
∴OD∥AC.
∵DE为⊙O的切线,
∴DE⊥OD.
∴DE⊥AC.

(2)解:过O作OF⊥BD,则BF=FD.
在Rt△BFO中,∠B=30°,
∴OF=OB,BF=OB.
∵BD=DC,BF=FD,
∴FC=3BF=OB.
在Rt△OFC中,
tan∠BCO====
点评:本题比较复杂,综合考查了三角形中位线定理及切线的性质、三角函数的定义等知识点,有一定的综合性.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《四边形》(07)(解析版) 题型:解答题

(2010•烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2010•烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年山东省烟台市中考数学试卷(解析版) 题型:解答题

(2010•烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的平移》(02)(解析版) 题型:解答题

(2010•烟台)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;
(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年山东省烟台市中考数学试卷(解析版) 题型:选择题

(2010•烟台)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )

A.AB2=BC•BD
B.AB2=AC•BD
C.AB•AD=BD•BC
D.AB•AD=AD•CD

查看答案和解析>>

同步练习册答案