【题目】如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点C,若ACAB=12,求AC的长.
【答案】
(1)证明:连接CD,如图,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠CAD+∠D=90°,
∵∠PAC=∠PBA,
∠D=∠PBA,
∴∠CAD+∠PAC=90°,即∠PAD=90°,
∴PA⊥AD,
∴PA是⊙O的切线
(2)解:∵CF⊥AD,
∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,
∴∠ACF=∠D,
∴∠ACF=∠B,
而∠CAG=∠BAC,
∴△ACG∽△ABC,
∴AC:AB=AG:AC,
∴AC2=AGAB=12,
∴AC=2
【解析】(1)连接CD,如图,利用圆周角定理得到∠CAD+∠D=90°,再∠D=∠PBA,加上∠PAC=∠PBA,所以∠PAD=90°,然后根据切线的判定定理即可得到结论;(2)证明△ACG∽△ABC,再利用相似比得到AC2=AGAB=12,从而得到AC=2 .
科目:初中数学 来源: 题型:
【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2 .
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)
(1)当点P的坐标为(﹣1,0)时,求点D的坐标;
(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;
(3)连接OB交AD于点G,求证:AG=DG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上,O表示原点,A、B两点分别表示﹣8和2.
(1)求出线段AB的长度;
(2)动点P从A出发沿数轴向右运动,速度为每秒5个单位长度;同时点Q从B出发,沿数轴向右运动,速度为每秒3个单位长度,当P、Q重合时,两点同时停止运动.设两点运动时间为t秒,用含有t的式子表示线段PQ的长;
(3)在(2)的条件下,t为何值时,点P、点Q到原点O的距离相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC的顶点B在反比例函数 的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是( )
A.12
B.4
C.12-3
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”
小艾的作法如下:
(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.
(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.
(3)两弧分别交于点P和点M
(4)连接PM,与直线l交于点Q,直线PQ即为所求.
老师表扬了小艾的作法是对的.
请回答:小艾这样作图的依据是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2 )米.
(1)求背水坡AD的坡度;
(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com