精英家教网 > 初中数学 > 题目详情

【题目】课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法. 我们有多少种剪法,图1是其中的一种方法:

定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.
(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;
(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.

【答案】
(1)解:如图2作图,


(2)解:如图3 ①、②作△ABC.

①当AD=AE时,

∵2x+x=30+30,

∴x=20.

②当AD=DE时,

∵30+30+2x+x=180,

∴x=40.

所以∠C的度数是20°或40°


(3)解:如图4,CD、AE就是所求的三分线.

设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,

此时△AEC∽△BDC,△ACD∽△ABC,

设AE=AD=x,BD=CD=y,

∵△AEC∽△BDC,

∴x:y=2:3,

∵△ACD∽△ABC,

∴2:x=(x+y):2,

所以联立得方程组

解得

即三分线长分别是


【解析】(1)45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形,则易得一种情况.第二种情形可以考虑题例中给出的方法,试着同样以一底角作为新等腰三角形的底角,则另一底脚被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形.即又一三分线作法.(2)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再标准作图实验﹣﹣分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC.根据图形易得x的值.(3)因为∠C=2∠B,作∠C的角平分线,则可得第一个等腰三角形.而后借用圆规,以边长画弧,根据交点,寻找是否存在三分线,易得如图4图形为三分线.则可根据外角等于内角之和及腰相等等情况列出等量关系,求解方程可知各线的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:

(1)这次被调查的总人数是多少?
(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.
(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为(
A.50秒
B.45秒
C.40秒
D.35秒

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;
(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;
(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:
(1)求这7天日租车量的众数、中位数和平均数;
(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;
(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D是AB中点,联结CD.
(1)若AB=10且∠ACD=∠B,求AC的长.
(2)过D点作BC的平行线交AC于点E,设 = = ,请用向量 表示 (直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.
(1)求y关于x的函数解析式及定义域;
(2)当△PQE是等腰三角形时,求BD的长;
(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);
(1)求这条抛物线的表达式;
(2)联结AB、BD、DA,求△ABD的面积;
(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D为BC边的中点,点E在BC边的延长线上,且CE=BC,连接AE,F为线段AE的中点
(1)求线段CF的长;
(2)求∠CAE的正弦值.

查看答案和解析>>

同步练习册答案