【题目】如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F= ,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DFGF.
【答案】
(1)证明:∵OA=OB,
∴∠OAB=∠OBA,
∵OA⊥CD,
∴∠OAB+∠AGC=90°,
又∵∠FGB=∠FBG,∠FGB=∠AGC,
∴∠FBG+∠OBA=90°,
即∠OBF=90°,
∴OB⊥FB,
∵AB是⊙O的弦,
∴点B在⊙O上,
∴BF是⊙O的切线
(2)解:∵AC∥BF,
∴∠ACF=∠F,
∵CD=a,OA⊥CD,
∴CE= CD= a,
∵tanF= ,
∴tan∠ACF= = ,
即 = ,
解得AE= a,
连接OC,设圆的半径为r,则OE=r﹣ a,
在Rt△OCE中,CE2+OE2=OC2,
即( a)2+(r﹣ a)2=r2,
解得r= a;
(3)证明:连接BD,
∵∠DBG=∠ACF,∠ACF=∠F(已证),
∴∠DBG=∠F,
又∵∠FGB=∠BGF,
∴△BDG∽△FBG,
∴ = ,
即GB2=DGGF,
∴GF2﹣GB2=GF2﹣DGGF=GF(GF﹣DG)=GFDF,
即GF2﹣GB2=DFGF.
【解析】(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE= CD= a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r;(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2 , 然后代入等式左边整理即可得证.
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1 .
(1)若反比例函数y= 和y= 的图象分别经过点B、B1 , 求k1和k2的值;
(2)将矩形O1A1B1C1向左平移得到O2A2B2C2 , 当点O2、B2在反比例函数y= 的图象上时,求平移的距离和k3的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2013年起,深圳市实施行人闯红灯违法处罚,处罚方式分为四类:“罚款20元”、“罚款50元”、“罚款100元”、“穿绿马甲维护交通”.如图是实施首日由某片区的执法结果整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)实施首日,该片区行人闯红灯违法受处罚一共人;
(2)在所有闯红灯违法受处罚的行人中,穿绿马甲维护交通所占的百分比是%;
(3)据了解,“罚款20元”人数是“罚款50元”人数的2倍,请补全条形统计图;
(4)根据(3)中的信息,在扇形统计图中,“罚款20元”所在扇形的圆心角等于度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某校举行的“中国学生营养日”活动中,设计了抽奖环节:在一只不透明的箱子中有3个球,其中2个红球,1个白球,它们除颜色外均相同.
(1)随机摸出一个球,恰好是红球就能中奖,则中奖的概率是多少?
(2)同时摸出两个球,都是红球 就能中特别奖,则中特别奖的概率是多少?(要求画树状图或列表求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数 的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n).
(1)求一次函数的表达式;
(2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.
(1)b= , c= , 点B的坐标为;(直接填写结果)
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣ x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣ x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com