精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1

(1)若反比例函数y= 和y= 的图象分别经过点B、B1 , 求k1和k2的值;
(2)将矩形O1A1B1C1向左平移得到O2A2B2C2 , 当点O2、B2在反比例函数y= 的图象上时,求平移的距离和k3的值.

【答案】
(1)

解:∵矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,

∴B(3,2),

∵反比例函数y= 的图象分别经过点B,

∴k1=3×2=6;

∵将矩形OABC向上平移4个单位得到矩形O1A1B1C1

∴B1(3,6),

∵反比例函数y= 的图象经过点B1

∴k2=3×6=18;


(2)

解:设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,则O2(﹣a,4),B2(3﹣a,6),

∵点O2、B2在反比例函数y= 的图象上,

∴k3=﹣4a=6(3﹣a),

解得a=9,k3=﹣36.


【解析】(1)将B(3,2)代入y= ,即可求出k1的值;将B1(3,6)代入y= ,即可求出k2的值;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2 , 根据向左平移,横坐标相减,纵坐标不变得到点O2(﹣a,4),B2(3﹣a,6),由点O2、B2在反比例函数y= 的图象上,得出k3=﹣4a=6(3﹣a),解方程即可求出a与k3的值.
【考点精析】本题主要考查了比例系数k的几何意义和平移的性质的相关知识点,需要掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积;①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,过点A(﹣ ,0)的两条直线分别交y轴于B、C两点,∠ABO=30°,OB=3OC.

(1)试说明直线AC与直线AB垂直;
(2)若点D在直线AC上,且DB=DC,求点D的坐标;
(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC交⊙O于点E,连接BE交AC于点H.

(1)求证:BE平分∠ABC;
(2)连接OD,若BH=BD=2,求OD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:
(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;
(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是 , A92的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从3,﹣1, ,1,﹣3这5个数中,随机抽取一个数记为a,若数a使关于x的不等式组 无解,且使关于x的分式方程 =﹣1有整数解,那么这5个数中所有满足条件的a的值之积是(
A.
B.﹣2
C.﹣3
D.﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.
(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
(2)若tan∠F= ,CD=a,请用a表示⊙O的半径;
(3)求证:GF2﹣GB2=DFGF.

查看答案和解析>>

同步练习册答案