【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.
【答案】
(1)证明:如图,
连接OD.
∵AB=AC,
∴∠B=∠C,
∵OD=OC,
∴∠ODC=∠C,
∴∠ODC=∠B,
∴OD∥AB,
∵DF⊥AB,
∴OD⊥DF,
∵点D在⊙O上,
∴直线DF与⊙O相切
(2)解:∵四边形ACDE是⊙O的内接四边形,
∴∠AED+∠ACD=180°,
∵∠AED+∠BED=180°,
∴∠BED=∠ACD,
∵∠B=∠B,
∴△BED∽△BCA,
∴ = ,
∵OD∥AB,AO=CO,
∴BD=CD= BC=3,
又∵AE=7,
∴ = ,
∴BE=2,
∴AC=AB=AE+BE=7+2=9
【解析】(1)连接OD,利用AB=AC,OD=OC,证得OD∥AD,易证DF⊥OD,故DF为⊙O的切线;(2)证得△BED∽△BCA,求得BE,利用AC=AB=AE+BE求得答案即可.
科目:初中数学 来源: 题型:
【题目】2015年榕城区从中随机调查了5所初中九年级学生的数学考试成绩,学生的考试成绩情况如表(数学考试满分120分)
分数段 | 频数 | 频率 |
72分以下 | 368 | 0.2 |
72﹣﹣﹣﹣80分 | 460 | 0.25 |
81﹣﹣﹣﹣95分 | ||
96﹣﹣﹣﹣108分 | 184 | 0.2 |
109﹣﹣﹣﹣119分 | ||
120分 | 54 |
(1)这5所初中九年级学生的总人数有多少人?
(2)统计时,老师漏填了表中空白处的数据,请你帮老师填上;
(3)从这5所初中九年级学生中随机抽取一人,恰好是108分以上(不包括108分)的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:
“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.
例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.
(1)已知点A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三点的“矩面积”为12,求点P的坐标;
②直接写出A,B,P三点的“矩面积”的最小值.
(2)已知点E(4,0),F(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F,M三点的“矩面积”为8,求m的取值范围;
②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程(组)解应用题 某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,但每件进价比第一批衬衫的每件进价少了10元,且进货量是第一次进货量的一半,求第一批购进这种衬衫每件的进价是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1 .
(1)若反比例函数y= 和y= 的图象分别经过点B、B1 , 求k1和k2的值;
(2)将矩形O1A1B1C1向左平移得到O2A2B2C2 , 当点O2、B2在反比例函数y= 的图象上时,求平移的距离和k3的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com