【题目】根据要求计算下列问题:
(1)计算(﹣ )﹣2﹣2cos45°+( )0+ +(﹣1)2017
(2)先化简,再求值 ,其中a= .
【答案】
(1)解:(﹣ )﹣2﹣2cos45°+( )0+ +(﹣1)2017
=9﹣2× +1+ +(﹣1)
=
=9
(2)解:
=
=
=
= ,
当 时,原式= = =1
【解析】(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)先化简题目中的式子,然后将a的值代入即可解答本题.
【考点精析】解答此题的关键在于理解零指数幂法则的相关知识,掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数),以及对整数指数幂的运算性质的理解,了解aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H.
(1)求证:△BEF≌△CEH;
(2)求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AB=5,BC=3,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A'处,当A'E⊥AC时,A'B= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,过点A(﹣ ,0)的两条直线分别交y轴于B、C两点,∠ABO=30°,OB=3OC.
(1)试说明直线AC与直线AB垂直;
(2)若点D在直线AC上,且DB=DC,求点D的坐标;
(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,E是AD上的一点,且AE= AD,对角线AC,BD交于点O,EC交BD于F,BE交AC于G,如果平行四边形ABCD的面积为S,那么,△GEF的面积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为(1,4)的抛物线y=ax2+bx+c与直线y= x+n交于点A(2,2),直线y= x+n与y轴交于点B与x轴交于点C
(1)求n的值及抛物线的解析式
(2)P为抛物线上的点,点P关于直线AB的对称轴点在x轴上,求点P的坐标
(3)点D为x轴上方抛物线上的一点,点E为轴上一点,以A、B、E、D为顶点的四边为平行四边形时,直接写出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.
(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围);
(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;
(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是 , A92的坐标是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com