【题目】在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:
“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.
例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.
(1)已知点A(1,2),B(﹣3,1),P(0,t).
①若A,B,P三点的“矩面积”为12,求点P的坐标;
②直接写出A,B,P三点的“矩面积”的最小值.
(2)已知点E(4,0),F(0,2),M(m,4m),N(n, ),其中m>0,n>0.
①若E,F,M三点的“矩面积”为8,求m的取值范围;
②直接写出E,F,N三点的“矩面积”的最小值及对应n的取值范围.
【答案】
(1)
解:由题意:a=4.
①当t>2时,h=t﹣1,
则4(t﹣1)=12,可得t=4,故点P的坐标为(0,4);
当t<1时,h=2﹣t,
则4(2﹣t)=12,可得t=﹣1,故点P 的坐标为(0,﹣1);
②∵根据题意得:h的最小值为:1,
∴A,B,P三点的“矩面积”的最小值为4
(2)
解:①∵E,F,M三点的“矩面积”为8,
∴a=4,h=2,
∴ .
∴0≤m≤ .
∵m>0,
∴0<m≤ ;
②∵当n≤4时,a=4,h= ,此时S=ah= ,
∴当n=4时,取最小值,S=16;
当4<n<8时,a=n,h= ,此时S=ah=16;
当n≥8时,a=n,h=2,此时S=ah=2n,
∴当n=8时,取最小值,S=16;
∴E,F,N三点的“矩面积”的最小值为16,此时n的取值范围为4≤n≤8
【解析】(1)①首先由题意:a=4,然后分别从①当t>2时,h=t﹣1,当t<1时,h=2﹣t,去分析求解即可求得答案;②首先根据题意得:h的最小值为:1,继而求得A,B,P三点的“矩面积”的最小值.(2)①由E,F,M三点的“矩面积”的最小值为8,可得a=4,h=2,即可得 .继而求得m的取值范围;②分别从当n≤4时,a=4,h= ,当4<n<8时,a=n,h= ,当n≥8时,a=n,h=2,去分析求解即可求得答案.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,AD为边上的高,将△ADC沿直线AC翻折得到△AEC,延长EA交⊙O于点P,连接FC,交AB于N.
(1)求证:∠BAC=∠ABC+∠ACF;
(2)求证:EF=DB;
(3)若AD=5,CD=10,CB∥AF,求点F到AB的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,顶点为(1,4)的抛物线y=ax2+bx+c与直线y= x+n交于点A(2,2),直线y= x+n与y轴交于点B与x轴交于点C
(1)求n的值及抛物线的解析式
(2)P为抛物线上的点,点P关于直线AB的对称轴点在x轴上,求点P的坐标
(3)点D为x轴上方抛物线上的一点,点E为轴上一点,以A、B、E、D为顶点的四边为平行四边形时,直接写出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动 秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).
(1)用含t的代数式表示OP,OQ;
(2)当t=1时,如图1,
将沿△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;
(3)连接AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.
问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)若AE=7,BC=6,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,⊙O的半径是5,点A为⊙O上一点,AB⊥x轴于点B,AC⊥y轴于点C,若四边形ABOC的面积为12,写出一个符合条件的点A的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC交⊙O于点E,连接BE交AC于点H.
(1)求证:BE平分∠ABC;
(2)连接OD,若BH=BD=2,求OD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:
(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;
(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com